Cargando…

Resolution of Cox mediated inflammation by Se supplementation in mouse experimental model of colitis

UC a form of IBD is a chronic inflammatory disorder of large intestine, with unknown etiology. Reports suggest a critical role of COX-2 dependent prostaglandins (PGs) mediated inflammatory pathway in pathophysiology of UC. However, COX inhibition using NSAIDs exacerbate IBD and thus is not a viable...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaur, Ramanpreet, Thakur, Shivani, Rastogi, Pulkit, Kaushal, Naveen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067745/
https://www.ncbi.nlm.nih.gov/pubmed/30063735
http://dx.doi.org/10.1371/journal.pone.0201356
Descripción
Sumario:UC a form of IBD is a chronic inflammatory disorder of large intestine, with unknown etiology. Reports suggest a critical role of COX-2 dependent prostaglandins (PGs) mediated inflammatory pathway in pathophysiology of UC. However, COX inhibition using NSAIDs exacerbate IBD and thus is not a viable solution. Currently, in DSS induced experimental colitis in mice, we have demonstrated that dietary Se supplementation (0.5ppm as sodium selenite) symptomatically resolves the signs of inflammation in a redox sensitive manner as compared to Se deficient (0.01ppm) conditions, as seen by modulation in oxidative stress markers, morphological changes, histopathological examinations, biochemical studies such as MPO activity, activity of intestinal markers enzymes as well as mRNA and expressions of various pro and anti-inflammatory factors such as, mPGES, hPGDS, TXAS, 15-PGDH, GPX-1 and GPX-2. These findings were validated and correlated with changes in the biophysical parameters such as membrane fluidity, electrical parameters (impedance), transport across the colonic tissue and FTIR. Current study not only concluded that Se at supranutritional concentrations by modulating the redox status relieves the signs of colitis by regulating COX dependent PG biosynthetic pathway, but also sheds light on the biophysical characterization of these inflammatory/resolution pathways involved in UC.