Cargando…
Weighted Random Support Vector Machine Clusters Analysis of Resting-State fMRI in Mild Cognitive Impairment
The identification of abnormal cognitive decline at an early stage becomes an increasingly significant conundrum to physicians and is of major interest in the studies of mild cognitive impairment (MCI). Support vector machine (SVM) as a high-dimensional pattern classification technique is widely emp...
Autores principales: | Bi, Xia-an, Xu, Qian, Luo, Xianhao, Sun, Qi, Wang, Zhigang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068241/ https://www.ncbi.nlm.nih.gov/pubmed/30090075 http://dx.doi.org/10.3389/fpsyt.2018.00340 |
Ejemplares similares
-
Random support vector machine cluster analysis of resting-state fMRI in Alzheimer's disease
por: Bi, Xia-an, et al.
Publicado: (2018) -
Classification of Early and Late Mild Cognitive Impairment Using Functional Brain Network of Resting-State fMRI
por: Zhang, Tingting, et al.
Publicado: (2019) -
Abnormal Functional Connectivity of the Amygdala in Mild Cognitive Impairment Patients With Depression Symptoms Revealed by Resting-State fMRI
por: Yang, Ting, et al.
Publicado: (2021) -
Altered voxel-mirrored homotopic connectivity in right temporal lobe epilepsy as measured using resting-state fMRI and support vector machine analyses
por: Chu, Yongqiang, et al.
Publicado: (2022) -
Application of Support Vector Machine on fMRI Data as Biomarkers in Schizophrenia Diagnosis: A Systematic Review
por: Steardo, Luca, et al.
Publicado: (2020)