Cargando…
On-The-Go Hyperspectral Imaging Under Field Conditions and Machine Learning for the Classification of Grapevine Varieties
Grapevine varietal classification is an important plant phenotyping issue for grape growing and wine industry. This task has been achieved from destructive techniques like classic ampelography and DNA analysis under laboratory conditions. This work displays a new approach for the classification of a...
Autores principales: | Gutiérrez, Salvador, Fernández-Novales, Juan, Diago, Maria P., Tardaguila, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068396/ https://www.ncbi.nlm.nih.gov/pubmed/30090110 http://dx.doi.org/10.3389/fpls.2018.01102 |
Ejemplares similares
-
Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer
por: Gutiérrez, Salvador, et al.
Publicado: (2015) -
Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy
por: Diago, Maria P., et al.
Publicado: (2018) -
Vineyard water status assessment using on-the-go thermal imaging and machine learning
por: Gutiérrez, Salvador, et al.
Publicado: (2018) -
Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions †
por: Gutiérrez, Salvador, et al.
Publicado: (2016) -
On-The-Go VIS + SW − NIR Spectroscopy as a Reliable Monitoring Tool for Grape Composition within the Vineyard
por: Fernández-Novales, Juan, et al.
Publicado: (2019)