Cargando…

Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images

The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves very high computational requirements due to the huge amount of information captured by the sensors. One of the stag...

Descripción completa

Detalles Bibliográficos
Autores principales: Florimbi, Giordana, Fabelo, Himar, Torti, Emanuele, Lazcano, Raquel, Madroñal, Daniel, Ortega, Samuel, Salvador, Ruben, Leporati, Francesco, Danese, Giovanni, Báez-Quevedo, Abelardo, Callicó, Gustavo M., Juárez, Eduardo, Sanz, César, Sarmiento, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068477/
https://www.ncbi.nlm.nih.gov/pubmed/30018216
http://dx.doi.org/10.3390/s18072314
_version_ 1783343277709197312
author Florimbi, Giordana
Fabelo, Himar
Torti, Emanuele
Lazcano, Raquel
Madroñal, Daniel
Ortega, Samuel
Salvador, Ruben
Leporati, Francesco
Danese, Giovanni
Báez-Quevedo, Abelardo
Callicó, Gustavo M.
Juárez, Eduardo
Sanz, César
Sarmiento, Roberto
author_facet Florimbi, Giordana
Fabelo, Himar
Torti, Emanuele
Lazcano, Raquel
Madroñal, Daniel
Ortega, Samuel
Salvador, Ruben
Leporati, Francesco
Danese, Giovanni
Báez-Quevedo, Abelardo
Callicó, Gustavo M.
Juárez, Eduardo
Sanz, César
Sarmiento, Roberto
author_sort Florimbi, Giordana
collection PubMed
description The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves very high computational requirements due to the huge amount of information captured by the sensors. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) filtering algorithm. The main goal of this study is to optimize and parallelize the KNN algorithm by exploiting the GPU technology to obtain real-time processing during brain cancer surgical procedures. This parallel version of the KNN performs the neighbor filtering of a classification map (obtained from a supervised classifier), evaluating the different classes simultaneously. The undertaken optimizations and the computational capabilities of the GPU device throw a speedup up to 66.18× when compared to a sequential implementation.
format Online
Article
Text
id pubmed-6068477
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-60684772018-08-07 Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images Florimbi, Giordana Fabelo, Himar Torti, Emanuele Lazcano, Raquel Madroñal, Daniel Ortega, Samuel Salvador, Ruben Leporati, Francesco Danese, Giovanni Báez-Quevedo, Abelardo Callicó, Gustavo M. Juárez, Eduardo Sanz, César Sarmiento, Roberto Sensors (Basel) Article The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves very high computational requirements due to the huge amount of information captured by the sensors. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) filtering algorithm. The main goal of this study is to optimize and parallelize the KNN algorithm by exploiting the GPU technology to obtain real-time processing during brain cancer surgical procedures. This parallel version of the KNN performs the neighbor filtering of a classification map (obtained from a supervised classifier), evaluating the different classes simultaneously. The undertaken optimizations and the computational capabilities of the GPU device throw a speedup up to 66.18× when compared to a sequential implementation. MDPI 2018-07-17 /pmc/articles/PMC6068477/ /pubmed/30018216 http://dx.doi.org/10.3390/s18072314 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Florimbi, Giordana
Fabelo, Himar
Torti, Emanuele
Lazcano, Raquel
Madroñal, Daniel
Ortega, Samuel
Salvador, Ruben
Leporati, Francesco
Danese, Giovanni
Báez-Quevedo, Abelardo
Callicó, Gustavo M.
Juárez, Eduardo
Sanz, César
Sarmiento, Roberto
Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images
title Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images
title_full Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images
title_fullStr Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images
title_full_unstemmed Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images
title_short Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images
title_sort accelerating the k-nearest neighbors filtering algorithm to optimize the real-time classification of human brain tumor in hyperspectral images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068477/
https://www.ncbi.nlm.nih.gov/pubmed/30018216
http://dx.doi.org/10.3390/s18072314
work_keys_str_mv AT florimbigiordana acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT fabelohimar acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT tortiemanuele acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT lazcanoraquel acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT madronaldaniel acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT ortegasamuel acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT salvadorruben acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT leporatifrancesco acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT danesegiovanni acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT baezquevedoabelardo acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT callicogustavom acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT juarezeduardo acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT sanzcesar acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages
AT sarmientoroberto acceleratingtheknearestneighborsfilteringalgorithmtooptimizetherealtimeclassificationofhumanbraintumorinhyperspectralimages