Cargando…

Development of a Modular Board for EEG Signal Acquisition

The increased popularity of brain-computer interfaces (BCIs) has created a new demand for miniaturized and low-cost electroencephalogram (EEG) acquisition devices for entertainment, rehabilitation, and scientific needs. The lack of scientific analysis for such system design, modularity, and unified...

Descripción completa

Detalles Bibliográficos
Autores principales: Uktveris, Tomas, Jusas, Vacius
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068481/
https://www.ncbi.nlm.nih.gov/pubmed/29970846
http://dx.doi.org/10.3390/s18072140
Descripción
Sumario:The increased popularity of brain-computer interfaces (BCIs) has created a new demand for miniaturized and low-cost electroencephalogram (EEG) acquisition devices for entertainment, rehabilitation, and scientific needs. The lack of scientific analysis for such system design, modularity, and unified validation tends to suppress progress in this field and limit supply for new low-cost device availability. To eliminate this problem, this paper presents the design and evaluation of a compact, modular, battery powered, conventional EEG signal acquisition board based on an ADS1298 analog front-end chip. The introduction of this novel, vertically stackable board allows the EEG scaling problem to be solved by effectively reconfiguring hardware for small or more demanding applications. The ability to capture 16 to 64 EEG channels at sample rates from 250 Hz to 1000 Hz and to transfer raw EEG signal over a Bluetooth or Wi-Fi interface was implemented. Furthermore, simple but effective assessment techniques were used for system evaluation. While conducted tests confirm the validity of the system against official datasheet specifications and for real-world applications, the proposed quality verification methods can be further employed for analyzing other similar EEG devices in the future. With 6.59 microvolts peak-to-peak input referred noise and a −97 dB common mode rejection ratio in 0–70 Hz band, the proposed design can be qualified as a low-cost precision cEEG research device.