Cargando…
ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses
Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detec...
Autores principales: | Vu, Huong Thi Thu, Gomez, Felipe, Cherelle, Pierre, Lefeber, Dirk, Nowé, Ann, Vanderborght, Bram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068484/ https://www.ncbi.nlm.nih.gov/pubmed/30041421 http://dx.doi.org/10.3390/s18072389 |
Ejemplares similares
-
A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses
por: Vu, Huong Thi Thu, et al.
Publicado: (2020) -
The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation
por: Cherelle, Pierre, et al.
Publicado: (2016) -
Handover Optimization Algorithm Based on T2RFS-FNN
por: Chen, Yong, et al.
Publicado: (2022) -
Cognitive performance and brain dynamics during walking with a novel bionic foot: A pilot study
por: De Pauw, Kevin, et al.
Publicado: (2019) -
Evaluation and Analysis of Push-Pull Cable Actuation System Used for Powered Orthoses
por: Grosu, Svetlana, et al.
Publicado: (2018)