Cargando…

Rapid Airplane Detection in Remote Sensing Images Based on Multilayer Feature Fusion in Fully Convolutional Neural Networks

To address the issues encountered when using traditional airplane detection methods, including the low accuracy rate, high false alarm rate, and low detection speed due to small object sizes in aerial remote sensing images, we propose a remote sensing image airplane detection method that uses multil...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yuelei, Zhu, Mingming, Xin, Peng, Li, Shuai, Qi, Min, Ma, Shiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068515/
https://www.ncbi.nlm.nih.gov/pubmed/30021996
http://dx.doi.org/10.3390/s18072335
Descripción
Sumario:To address the issues encountered when using traditional airplane detection methods, including the low accuracy rate, high false alarm rate, and low detection speed due to small object sizes in aerial remote sensing images, we propose a remote sensing image airplane detection method that uses multilayer feature fusion in fully convolutional neural networks. The shallow layer and deep layer features are fused at the same scale after sampling to overcome the problems of low dimensionality in the deep layer and the inadequate expression of small objects. The sizes of candidate regions are modified to fit the size of the actual airplanes in the remote sensing images. The fully connected layers are replaced with convolutional layers to reduce the network parameters and adapt to different input image sizes. The region proposal network shares convolutional layers with the detection network, which ensures high detection efficiency. The simulation results indicate that, when compared to typical airplane detection methods, the proposed method is more accurate and has a lower false alarm rate. Additionally, the detection speed is considerably faster and the method can accurately and rapidly complete airplane detection tasks in aerial remote sensing images.