Cargando…
Comparison of Data Preprocessing Approaches for Applying Deep Learning to Human Activity Recognition in the Context of Industry 4.0
According to the Industry 4.0 paradigm, all objects in a factory, including people, are equipped with communication capabilities and integrated into cyber-physical systems (CPS). Human activity recognition (HAR) based on wearable sensors provides a method to connect people to CPS. Deep learning has...
Autores principales: | Zheng, Xiaochen, Wang, Meiqing, Ordieres-Meré, Joaquín |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068555/ https://www.ncbi.nlm.nih.gov/pubmed/29970873 http://dx.doi.org/10.3390/s18072146 |
Ejemplares similares
-
Deep Learning for Industrial Computer Vision Quality Control in the Printing Industry 4.0
por: Villalba-Diez, Javier, et al.
Publicado: (2019) -
Geometric Deep Lean Learning: Deep Learning in Industry 4.0 Cyber–Physical Complex Networks
por: Villalba-Díez, Javier, et al.
Publicado: (2020) -
Data Handling in Industry 4.0: Interoperability Based on Distributed Ledger Technology
por: Sun, Shengjing, et al.
Publicado: (2020) -
Human–Machine Integration in Processes within Industry 4.0 Management
por: Villalba-Diez, Javier, et al.
Publicado: (2021) -
Industry 4.0 Lean Shopfloor Management Characterization Using EEG Sensors and Deep Learning
por: Schmidt, Daniel, et al.
Publicado: (2020)