Cargando…
A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks
Cognitive Radio (CR) is a promising technology to overcome spectrum scarcity, which currently faces lots of unsolved problems. One of the critical challenges for setting up such systems is how to coordinate multiple protocol layers such as routing and spectrum access in a partially observable enviro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068577/ https://www.ncbi.nlm.nih.gov/pubmed/30004424 http://dx.doi.org/10.3390/s18072119 |
_version_ | 1783343301114462208 |
---|---|
author | Du, Yihang Zhang, Fan Xue, Lei |
author_facet | Du, Yihang Zhang, Fan Xue, Lei |
author_sort | Du, Yihang |
collection | PubMed |
description | Cognitive Radio (CR) is a promising technology to overcome spectrum scarcity, which currently faces lots of unsolved problems. One of the critical challenges for setting up such systems is how to coordinate multiple protocol layers such as routing and spectrum access in a partially observable environment. In this paper, a deep reinforcement learning approach is adopted for solving above problem. Firstly, for the purpose of compressing huge action space in the cross-layer design problem, a novel concept named responsibility rating is introduced to help decide the transmission power of every Secondary User (SU). In order to deal with problem of dimension curse while reducing replay memory, the Prioritized Memories Deep Q-Network (PM-DQN) is proposed. Furthermore, PM-DQN is applied to solve the joint routing and resource allocation problem in cognitive radio ad hoc network for minimizing the transmission delay and power consumption. Simulation results illustrates that our proposed algorithm can reduce the end-to-end delay, packet loss ratio and estimation error while achieving higher energy efficiency compared with traditional algorithm. |
format | Online Article Text |
id | pubmed-6068577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60685772018-08-07 A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks Du, Yihang Zhang, Fan Xue, Lei Sensors (Basel) Article Cognitive Radio (CR) is a promising technology to overcome spectrum scarcity, which currently faces lots of unsolved problems. One of the critical challenges for setting up such systems is how to coordinate multiple protocol layers such as routing and spectrum access in a partially observable environment. In this paper, a deep reinforcement learning approach is adopted for solving above problem. Firstly, for the purpose of compressing huge action space in the cross-layer design problem, a novel concept named responsibility rating is introduced to help decide the transmission power of every Secondary User (SU). In order to deal with problem of dimension curse while reducing replay memory, the Prioritized Memories Deep Q-Network (PM-DQN) is proposed. Furthermore, PM-DQN is applied to solve the joint routing and resource allocation problem in cognitive radio ad hoc network for minimizing the transmission delay and power consumption. Simulation results illustrates that our proposed algorithm can reduce the end-to-end delay, packet loss ratio and estimation error while achieving higher energy efficiency compared with traditional algorithm. MDPI 2018-07-02 /pmc/articles/PMC6068577/ /pubmed/30004424 http://dx.doi.org/10.3390/s18072119 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Du, Yihang Zhang, Fan Xue, Lei A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks |
title | A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks |
title_full | A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks |
title_fullStr | A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks |
title_full_unstemmed | A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks |
title_short | A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks |
title_sort | kind of joint routing and resource allocation scheme based on prioritized memories-deep q network for cognitive radio ad hoc networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068577/ https://www.ncbi.nlm.nih.gov/pubmed/30004424 http://dx.doi.org/10.3390/s18072119 |
work_keys_str_mv | AT duyihang akindofjointroutingandresourceallocationschemebasedonprioritizedmemoriesdeepqnetworkforcognitiveradioadhocnetworks AT zhangfan akindofjointroutingandresourceallocationschemebasedonprioritizedmemoriesdeepqnetworkforcognitiveradioadhocnetworks AT xuelei akindofjointroutingandresourceallocationschemebasedonprioritizedmemoriesdeepqnetworkforcognitiveradioadhocnetworks AT duyihang kindofjointroutingandresourceallocationschemebasedonprioritizedmemoriesdeepqnetworkforcognitiveradioadhocnetworks AT zhangfan kindofjointroutingandresourceallocationschemebasedonprioritizedmemoriesdeepqnetworkforcognitiveradioadhocnetworks AT xuelei kindofjointroutingandresourceallocationschemebasedonprioritizedmemoriesdeepqnetworkforcognitiveradioadhocnetworks |