Cargando…
Digital Holography as Computer Vision Position Sensor with an Extended Range of Working Distances
Standard computer vision methods are usually based on powerful contact-less measurement approaches but applications, especially at the micro-scale, are restricted by finite depth-of-field and fixed working distance of imaging devices. Digital holography is a lensless, indirect imaging method recordi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068586/ https://www.ncbi.nlm.nih.gov/pubmed/29932146 http://dx.doi.org/10.3390/s18072005 |
Sumario: | Standard computer vision methods are usually based on powerful contact-less measurement approaches but applications, especially at the micro-scale, are restricted by finite depth-of-field and fixed working distance of imaging devices. Digital holography is a lensless, indirect imaging method recording the optical wave diffracted by the object onto the image sensor. The object is reconstructed numerically by propagating the recorded wavefront backward. The object distance becomes a computation parameter that can be chosen arbitrarily and adjusted to match the object position. No refractive lens is used and usual depth-of-field and working distance limitations are replaced by less restrictive ones tied to the laser-source coherence-length and to the size and resolution of the camera sensor. This paper applies digital holography to artificial visual in-plane position sensing with an extra-large range-to-resolution ratio. The object is made of a pseudoperiodic pattern allowing a subpixel resolution as well as a supra field-of-observation displacement range. We demonstrate an in-plane resolution of 50 nm and [Formula: see text] deg. in X, Y and [Formula: see text] respectively, over a working distance range of more than 15 cm. The allowed workspace extends over [Formula: see text]. Digital holography extends the field of application of computer vision by allowing an extra-large range of working distances inaccessible to refractive imaging systems. |
---|