Cargando…
Dihydropyridine Fluorophores Allow for Specific Detection of Human Antibodies in Serum
[Image: see text] Antigen recognition by antibodies plays an important role in human biology and in the development of diseases. This interaction provides a basis for multiple diagnostic assays and is a guide for treatments. We have developed dihydropyridine-based fluorophores that form stable compl...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068599/ https://www.ncbi.nlm.nih.gov/pubmed/30087918 http://dx.doi.org/10.1021/acsomega.8b00424 |
Sumario: | [Image: see text] Antigen recognition by antibodies plays an important role in human biology and in the development of diseases. This interaction provides a basis for multiple diagnostic assays and is a guide for treatments. We have developed dihydropyridine-based fluorophores that form stable complexes with double-stranded DNA and upon recognition of the antibodies to DNA (anti-DNA) provide an optical response. The fluorophores described herein have advantageous optical properties compared to those of the currently available dyes making them valuable for research and clinical diagnostics. By studying a series of novel fluorophores, crucial parameters for the design were established, providing the required sensitivity and specificity in the detection of antibodies. Using these DNA–fluorophore complexes in a direct immunofluorescence assay, antibodies to DNA are specifically detected in 80 patients diagnosed with an autoimmune disease, systemic lupus erythematosus. Positivity indicated by emission change of α-(4′-O-methoxyphenyl)-2-furyl dihydropyridine strongly correlates with other disease biomarkers and autoimmune arthritis. |
---|