Cargando…
A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions towards Imbalanced Unlabeled Data
Fault diagnosis of rolling element bearings is an effective technology to ensure the steadiness of rotating machineries. Most of the existing fault diagnosis algorithms are supervised methods and generally require sufficient labeled data for training. However, the acquisition of labeled samples is o...
Autores principales: | Chen, Xinan, Wang, Zhipeng, Zhang, Zhe, Jia, Limin, Qin, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068608/ https://www.ncbi.nlm.nih.gov/pubmed/29966321 http://dx.doi.org/10.3390/s18072097 |
Ejemplares similares
-
Adaptive Multiclass Mahalanobis Taguchi System for Bearing Fault Diagnosis under Variable Conditions
por: Wang, Ning, et al.
Publicado: (2018) -
Semi-supervised learning improves regulatory sequence prediction with unlabeled sequences
por: Mourad, Raphaël
Publicado: (2023) -
Semi-supervised prediction of protein interaction sites from unlabeled sample information
por: Wang, Ye, et al.
Publicado: (2019) -
Visibility Graph Feature Model of Vibration Signals: A Novel Bearing Fault Diagnosis Approach
por: Zhang, Zhe, et al.
Publicado: (2018) -
Spectral Kurtosis Entropy and Weighted SaE-ELM for Bogie Fault Diagnosis under Variable Conditions
por: Wang, Zhipeng, et al.
Publicado: (2018)