Cargando…
Toward a More Complete, Flexible, and Safer Speed Planning for Autonomous Driving via Convex Optimization
In this paper, we present a complete, flexible and safe convex-optimization-based method to solve speed planning problems over a fixed path for autonomous driving in both static and dynamic environments. Our contributions are five fold. First, we summarize the most common constraints raised in vario...
Autores principales: | Zhang, Yu, Chen, Huiyan, Waslander, Steven L., Yang, Tian, Zhang, Sheng, Xiong, Guangming, Liu, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068623/ https://www.ncbi.nlm.nih.gov/pubmed/29986478 http://dx.doi.org/10.3390/s18072185 |
Ejemplares similares
-
Automated driving: safer and more efficient future driving
por: Watzenig, Daniel, et al.
Publicado: (2017) -
Convex Decomposition for a Coverage Path Planning for Autonomous Vehicles: Interior Extension of Edges
por: Nielsen, Lasse Damtoft, et al.
Publicado: (2019) -
Drug-related violence: Will COVID-19 drive better data for safer and more secure EU?
por: Groshkova, Teodora, et al.
Publicado: (2021) -
Schur-convexity, Schur-geometric and Schur-harmonic convexity for a composite function of complete symmetric function
por: Shi, Huan-Nan, et al.
Publicado: (2016) -
Caliper navigation for craniotomy planning of convexity targets
por: Jägersberg, Max, et al.
Publicado: (2021)