Cargando…

Compressive Sensing Based Multilevel Fast Multipole Acceleration for Fast Scattering Center Extraction and ISAR Imaging

In recent years, Compressive Sensing (CS) theory has been very popular in the data sensing and process area as it utilizes the sparsity and measurement matrix to reconstruct the compressible signal from limited samples successfully. In this paper, CS is introduced into an efficient numerical method,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Wei, Jiang, Ming, He, Xin, Hu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068641/
https://www.ncbi.nlm.nih.gov/pubmed/29941775
http://dx.doi.org/10.3390/s18072024
Descripción
Sumario:In recent years, Compressive Sensing (CS) theory has been very popular in the data sensing and process area as it utilizes the sparsity and measurement matrix to reconstruct the compressible signal from limited samples successfully. In this paper, CS is introduced into an efficient numerical method, multilevel fast multipole acceleration (MLFMA), for the electromagnetic (EM) scattering problem over a wide incident angle. This allows composition of a new kind of incident wave, which obtains efficient and reliable data for scattering centers extraction with low complexity. The resulting data from CS-based MLFMA are processed for ISAR) imaging. Simulation results show the received data for ISAR imaging from MLFMA with CS can outperform the data from MLFMA, which achieves a similar quality of ISAR imaging. Additionally, the computation complexity is improved by CS through the reduced matrix computation for fewer incident waves. It makes ISAR imaging using real data feasible and meaningful.