Cargando…
An Effective Singular Value Selection and Bearing Fault Signal Filtering Diagnosis Method Based on False Nearest Neighbors and Statistical Information Criteria
Singular value decomposition (SVD) is an effective method used in bearing fault diagnosis. Ideally two important problems should be solved in any diagnosis: one is how to decide the dimension embedding of the trajectory matrix (TM); the other is how to select the singular value (SV) representing the...
Autores principales: | Liao, Zhiqiang, Song, Liuyang, Chen, Peng, Guan, Zhaoyi, Fang, Ziye, Li, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068648/ https://www.ncbi.nlm.nih.gov/pubmed/29997357 http://dx.doi.org/10.3390/s18072235 |
Ejemplares similares
-
Fault Detection and Isolation of Non-Gaussian and
Nonlinear Processes Based on Statistics Pattern Analysis and the k-Nearest Neighbor Method
por: Zhou, Zhe, et al.
Publicado: (2022) -
Lectures on the nearest neighbor method
por: Biau, Gérard, et al.
Publicado: (2015) -
Rolling Bearing Fault Diagnosis Based on Optimal Notch Filter and Enhanced Singular Value Decomposition
por: Pang, Bin, et al.
Publicado: (2018) -
Approximate Nearest Neighbor Search by Residual Vector Quantization
por: Chen, Yongjian, et al.
Publicado: (2010) -
Dimensionality reduction with unsupervised nearest neighbors
por: Kramer, Oliver
Publicado: (2013)