Cargando…
Short-Term Traffic State Prediction Based on the Spatiotemporal Features of Critical Road Sections
Recently, short-term traffic prediction under conditions with corrupted or missing data has become a popular topic. Since a road section has predictive power regarding the adjacent roads at a specific location, this paper proposes a novel hybrid convolutional long short-term memory neural network mo...
Autores principales: | Yang, Gang, Wang, Yunpeng, Yu, Haiyang, Ren, Yilong, Xie, Jindong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068706/ https://www.ncbi.nlm.nih.gov/pubmed/30011942 http://dx.doi.org/10.3390/s18072287 |
Ejemplares similares
-
Short-Term Traffic State Prediction Based on the Critical Road Selection Optimization in Transportation Networks
por: Ma, Tian, et al.
Publicado: (2021) -
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
por: Yu, Haiyang, et al.
Publicado: (2017) -
Road traffic flow prediction based on dynamic spatiotemporal graph attention network
por: Chen, Yuguang, et al.
Publicado: (2023) -
Road Traffic Accidents in Kazakhstan
por: AUBAKIROVA, Alma, et al.
Publicado: (2013) -
Road traffic injury Epidemiology
por: Soori, Hamid
Publicado: (2019)