Cargando…

DCO-MAC: A Hybrid MAC Protocol for Data Collection in Underwater Acoustic Sensor Networks

In underwater acoustic sensor networks (UASNs), medium access control (MAC) is an important issue because of its potentially significant effect on the network performance. However, designing a suitable MAC protocol for the UASN is challenging because of the specific characteristics of the underwater...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Min, Chen, Huifang, Xie, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068711/
https://www.ncbi.nlm.nih.gov/pubmed/30012969
http://dx.doi.org/10.3390/s18072300
Descripción
Sumario:In underwater acoustic sensor networks (UASNs), medium access control (MAC) is an important issue because of its potentially significant effect on the network performance. However, designing a suitable MAC protocol for the UASN is challenging because of the specific characteristics of the underwater acoustic channel and network, such as limited available bandwidth, long propagation delay, high bit-error-rate, and sparse network topology. In addition, as the traffic load is non-uniformly distributed in a UASN for data collection, it is essential to consider the application feature for the MAC protocol. In this paper, we propose a MAC protocol in a data-collection-oriented UASN, abbreviated as the DCO-MAC protocol. In the proposed protocol, the network is partitioned into two kinds of sub-networks according to the traffic load. A contention-based MAC protocol is used in the sub-network with a light traffic load, while a reservation-based MAC protocol is used in the sub-network with a heavy traffic load. Meanwhile, the DCO-MAC protocol supports the access of mobile nodes. The theoretical analysis and simulation results demonstrate that, in a UASN for data collection, the proposed MAC protocol outperforms the other existing MAC protocols, in terms of the network throughput, end-to-end packet delay, energy overhead, and fairness.