Cargando…

Stampede Prevention Design of Primary School Buildings in China: A Sustainable Built Environment Perspective

In China, crowd stampede accidents usually take place within crowded areas in middle and primary schools. The crowd stampede risk is particularly related to the architectural design such as the staircase design, the layout of crowded places, obstacles, etc. Through the investigation of building desi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Kefan, Song, Yu, Liu, Jia, Liang, Benbu, Liu, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068826/
https://www.ncbi.nlm.nih.gov/pubmed/30021973
http://dx.doi.org/10.3390/ijerph15071517
Descripción
Sumario:In China, crowd stampede accidents usually take place within crowded areas in middle and primary schools. The crowd stampede risk is particularly related to the architectural design such as the staircase design, the layout of crowded places, obstacles, etc. Through the investigation of building design in several primary schools, the relationship between the sustainable layout of crowded places (e.g., toilets, canteens, playgrounds, staircases) and the crowd stampede risk of students are introduced via agent-based simulations. In particular, different experimental scenarios are conducted on stairs in the primary buildings. The evacuation processes are recorded by video camera and spatial stepping characteristics (e.g., foot clearance, step length, mass center, the distance between the mass center and ankle, and etc.) are extracted from the video. Dynamic steady ability is investigated by adopting the margin of stability, quantified by the instantaneous difference between the edge of the base of support and extrapolated vertical projection of the mass center. Based on the sustainable built environment principles and historical data of students, this paper focuses on an in-depth analysis of the staircase design aiming at preventing the crowd stampede risk.