Cargando…

Fluorescent ZnO–Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction

[Image: see text] In this work, we report the interaction of a fluorescent ZnO–Au nanocomposite with deoxyribonucleic acid (DNA), leading to AT-specific DNA interaction, which is hitherto not known. For this study, three natural double-stranded (ds) DNAs having different AT:GC compositions were chos...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Sumita, Mukhopadhyay, Soumita, Chatterjee, Sabyasachi, Devi, Parukuttyamma Sujatha, Suresh Kumar, Gopinatha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068853/
https://www.ncbi.nlm.nih.gov/pubmed/30087915
http://dx.doi.org/10.1021/acsomega.7b02096
_version_ 1783343361773535232
author Das, Sumita
Mukhopadhyay, Soumita
Chatterjee, Sabyasachi
Devi, Parukuttyamma Sujatha
Suresh Kumar, Gopinatha
author_facet Das, Sumita
Mukhopadhyay, Soumita
Chatterjee, Sabyasachi
Devi, Parukuttyamma Sujatha
Suresh Kumar, Gopinatha
author_sort Das, Sumita
collection PubMed
description [Image: see text] In this work, we report the interaction of a fluorescent ZnO–Au nanocomposite with deoxyribonucleic acid (DNA), leading to AT-specific DNA interaction, which is hitherto not known. For this study, three natural double-stranded (ds) DNAs having different AT:GC compositions were chosen and a ZnO–Au nanocomposite has been synthesized by anchoring a glutathione-protected gold nanocluster on the surface of egg-shell-membrane (ESM)-based ZnO nanoparticles. The ESM-based bare ZnO nanoparticles did not show any selective interaction toward DNA, whereas intrinsic fluorescence of the ZnO–Au nanocomposite shows an appreciable blue shift (Δλ(max) = 18 nm) in the luminescence wavelength of 520 nm in the presence of ds calf thymus (CT) DNA over other studied DNAs. In addition, the interaction of the nanocomposite through fluorescence studies with single-stranded (ss) CT DNA, synthetic polynucleotides, and nucleobases/nucleotides (adenine, thymine, deoxythymidine monophosphate, deoxyadenosine monophosphate) was also undertaken to delineate the specificity in interaction. A minor blue shift (Δλ(max) = 5 nm) in the emission wavelength at 520 nm was observed for single-stranded CT DNA, suggesting the proficiency of the nanocomposite for discriminating ss and ds CT DNA. More importantly, fluorescence signals from the nano-bio-interaction could be measured directly without any modification of the target, which is the foremost advantage emanated from this study compared with other previous reports. The AT base-pair-induced enhancement was also found to be highest for the melting temperature of CT DNA (ΔT(mCT) = 6.7 °C). Furthermore, spectropolarimetric experiments followed by calorimetric analysis provided evidence for specificity in AT-rich DNA interaction. This study would lead to establish the fluorescent ZnO–Au nanocomposite as a probe for nanomaterial-based DNA-binding study, featuring its specific interaction toward AT-rich DNA.
format Online
Article
Text
id pubmed-6068853
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-60688532018-08-05 Fluorescent ZnO–Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction Das, Sumita Mukhopadhyay, Soumita Chatterjee, Sabyasachi Devi, Parukuttyamma Sujatha Suresh Kumar, Gopinatha ACS Omega [Image: see text] In this work, we report the interaction of a fluorescent ZnO–Au nanocomposite with deoxyribonucleic acid (DNA), leading to AT-specific DNA interaction, which is hitherto not known. For this study, three natural double-stranded (ds) DNAs having different AT:GC compositions were chosen and a ZnO–Au nanocomposite has been synthesized by anchoring a glutathione-protected gold nanocluster on the surface of egg-shell-membrane (ESM)-based ZnO nanoparticles. The ESM-based bare ZnO nanoparticles did not show any selective interaction toward DNA, whereas intrinsic fluorescence of the ZnO–Au nanocomposite shows an appreciable blue shift (Δλ(max) = 18 nm) in the luminescence wavelength of 520 nm in the presence of ds calf thymus (CT) DNA over other studied DNAs. In addition, the interaction of the nanocomposite through fluorescence studies with single-stranded (ss) CT DNA, synthetic polynucleotides, and nucleobases/nucleotides (adenine, thymine, deoxythymidine monophosphate, deoxyadenosine monophosphate) was also undertaken to delineate the specificity in interaction. A minor blue shift (Δλ(max) = 5 nm) in the emission wavelength at 520 nm was observed for single-stranded CT DNA, suggesting the proficiency of the nanocomposite for discriminating ss and ds CT DNA. More importantly, fluorescence signals from the nano-bio-interaction could be measured directly without any modification of the target, which is the foremost advantage emanated from this study compared with other previous reports. The AT base-pair-induced enhancement was also found to be highest for the melting temperature of CT DNA (ΔT(mCT) = 6.7 °C). Furthermore, spectropolarimetric experiments followed by calorimetric analysis provided evidence for specificity in AT-rich DNA interaction. This study would lead to establish the fluorescent ZnO–Au nanocomposite as a probe for nanomaterial-based DNA-binding study, featuring its specific interaction toward AT-rich DNA. American Chemical Society 2018-07-09 /pmc/articles/PMC6068853/ /pubmed/30087915 http://dx.doi.org/10.1021/acsomega.7b02096 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Das, Sumita
Mukhopadhyay, Soumita
Chatterjee, Sabyasachi
Devi, Parukuttyamma Sujatha
Suresh Kumar, Gopinatha
Fluorescent ZnO–Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction
title Fluorescent ZnO–Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction
title_full Fluorescent ZnO–Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction
title_fullStr Fluorescent ZnO–Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction
title_full_unstemmed Fluorescent ZnO–Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction
title_short Fluorescent ZnO–Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction
title_sort fluorescent zno–au nanocomposite as a probe for elucidating specificity in dna interaction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068853/
https://www.ncbi.nlm.nih.gov/pubmed/30087915
http://dx.doi.org/10.1021/acsomega.7b02096
work_keys_str_mv AT dassumita fluorescentznoaunanocompositeasaprobeforelucidatingspecificityindnainteraction
AT mukhopadhyaysoumita fluorescentznoaunanocompositeasaprobeforelucidatingspecificityindnainteraction
AT chatterjeesabyasachi fluorescentznoaunanocompositeasaprobeforelucidatingspecificityindnainteraction
AT deviparukuttyammasujatha fluorescentznoaunanocompositeasaprobeforelucidatingspecificityindnainteraction
AT sureshkumargopinatha fluorescentznoaunanocompositeasaprobeforelucidatingspecificityindnainteraction