Cargando…
HER2 inhibition in gastro-oesophageal cancer: A review drawing on lessons learned from breast cancer
Human epidermal growth factor receptor 2 (HER2)-inhibition is an important therapeutic strategy in HER2-amplified gastro-oesophageal cancer (GOC). A significant proportion of GOC patients display HER2 amplification, yet HER2 inhibition in these patients has not displayed the success seen in HER2 amp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068859/ https://www.ncbi.nlm.nih.gov/pubmed/30079142 http://dx.doi.org/10.4251/wjgo.v10.i7.159 |
Sumario: | Human epidermal growth factor receptor 2 (HER2)-inhibition is an important therapeutic strategy in HER2-amplified gastro-oesophageal cancer (GOC). A significant proportion of GOC patients display HER2 amplification, yet HER2 inhibition in these patients has not displayed the success seen in HER2 amplified breast cancer. Much of the current evidence surrounding HER2 has been obtained from studies in breast cancer, and we are only recently beginning to improve our understanding of HER2-amplified GOC. Whilst there are numerous licensed HER2 inhibitors in breast cancer, trastuzumab remains the only licensed HER2 inhibitor for HER2-amplified GOC. Clinical trials investigating lapatinib, trastuzumab emtansine, pertuzumab and MM-111 in GOC have demonstrated disappointing results and have not yet changed the treatment paradigm. Trastuzumab deruxtecan may hold promise and is currently being investigated in phase II trials. HER2 amplified GOC differs from breast cancer due to inherent differences in the HER2 amino-truncation and mutation rate, loss of HER2 expression, alterations in HER2 signalling pathways and differences in insulin-like growth factor-1 receptor and MET expression. Epigenetic alterations involving different microRNA profiles in GOC as compared to breast cancer and intrinsic differences in the immune environment are likely to play a role. The key to effective treatment of HER2 amplified GOC lies in understanding these mechanisms and tailoring HER2 inhibition for GOC patients in order to improve clinical outcomes. |
---|