Cargando…
Rub-Impact Fault Diagnosis Using an Effective IMF Selection Technique in Ensemble Empirical Mode Decomposition and Hybrid Feature Models
The complex nature of rubbing faults makes it difficult to use traditional signal analysis methods for feature extraction. Various time-frequency analysis approaches based on signal decomposition, such as empirical mode decomposition (EMD) and ensemble EMD (EEMD), have been widely utilized recently...
Autores principales: | Prosvirin, Alexander E., Islam, Manjurul, Kim, Jaeyoung, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068877/ https://www.ncbi.nlm.nih.gov/pubmed/29949912 http://dx.doi.org/10.3390/s18072040 |
Ejemplares similares
-
Blade Rub-Impact Fault Identification Using Autoencoder-Based Nonlinear Function Approximation and a Deep Neural Network
por: Prosvirin, Alexander E., et al.
Publicado: (2020) -
Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition
por: Lei, Yaguo, et al.
Publicado: (2013) -
Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery
por: Gao, Kangping, et al.
Publicado: (2021) -
Crack Classification of a Pressure Vessel Using Feature Selection and Deep Learning Methods
por: Islam, Manjurul, et al.
Publicado: (2018) -
Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis
por: Faysal, Atik, et al.
Publicado: (2021)