Cargando…

A Compact Low-Power LoRa IoT Sensor Node with Extended Dynamic Range for Channel Measurements

As sub-GHz wireless Internet of Things (IoT) sensor networks set the stage for long-range, low-data-rate communication, wireless technologies such as LoRa and SigFox receive a lot of attention. They aim to offer a reliable means of communication for an extensive amount of monitoring and management a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ameloot, Thomas, Van Torre, Patrick, Rogier, Hendrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068879/
https://www.ncbi.nlm.nih.gov/pubmed/29970839
http://dx.doi.org/10.3390/s18072137
Descripción
Sumario:As sub-GHz wireless Internet of Things (IoT) sensor networks set the stage for long-range, low-data-rate communication, wireless technologies such as LoRa and SigFox receive a lot of attention. They aim to offer a reliable means of communication for an extensive amount of monitoring and management applications. Recently, several studies have been conducted on their performance, but none of these feature a high dynamic range in terms of channel measurement. In this contribution an autonomous, low-power, LoRa-compatible wireless sensor node is presented. The main uses for this node are situated in LoRa channel characterization and link performance analysis. By applying stepped attenuators controlled by a dynamic attenuation adjustment algorithm, this node provides a dynamic range that is significantly larger than what is provided by commercially available LoRa modules. The node was calibrated in order to obtain accurate measurements of the received signal power in dBm. In this paper, both the hardware design as well as some verification measurements are discussed, unveiling various LoRa-related research applications and opportunities.