Cargando…
Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide
Microbiological safety of beef products can be protected by application of antimicrobial interventions throughout the beef chain. This study evaluated a commercial prototype antimicrobial intervention comprised of lytic bacteriophages formulated to reduce O157 and non-O157 Shiga-toxigenic Escherichi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068917/ https://www.ncbi.nlm.nih.gov/pubmed/30012993 http://dx.doi.org/10.3390/foods7070114 |
_version_ | 1783343377015635968 |
---|---|
author | Tolen, Tamra N. Xie, Yicheng Hairgrove, Thomas B. Gill, Jason J. Taylor, T. Matthew |
author_facet | Tolen, Tamra N. Xie, Yicheng Hairgrove, Thomas B. Gill, Jason J. Taylor, T. Matthew |
author_sort | Tolen, Tamra N. |
collection | PubMed |
description | Microbiological safety of beef products can be protected by application of antimicrobial interventions throughout the beef chain. This study evaluated a commercial prototype antimicrobial intervention comprised of lytic bacteriophages formulated to reduce O157 and non-O157 Shiga-toxigenic Escherichia coli (STEC) on beef cattle hide pieces, simulating commercial pre-harvest hide decontamination. STEC reduction in vitro by individual and cocktailed phages was determined by efficiency of plating (EOP). Following STEC inoculation onto hide pieces, the phage intervention was applied and hide pieces were analyzed to quantify reductions in STEC counts. Phage intervention treatment resulted in 0.4 to 0.7 log(10) CFU/cm(2) (p < 0.01) E. coli O157, O121, and O103 reduction. Conversely, E. coli O111 and O45 did not show any significant reduction after application of bacteriophage intervention (p > 0.05). Multiplicity of infection (MOI) evaluation indicated E. coli O157 and O121 isolates required the fewest numbers of phages per host cell to produce host lysis. STEC-attacking phages may be applied to assist in preventing STEC transmission to beef products. |
format | Online Article Text |
id | pubmed-6068917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60689172018-08-07 Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide Tolen, Tamra N. Xie, Yicheng Hairgrove, Thomas B. Gill, Jason J. Taylor, T. Matthew Foods Communication Microbiological safety of beef products can be protected by application of antimicrobial interventions throughout the beef chain. This study evaluated a commercial prototype antimicrobial intervention comprised of lytic bacteriophages formulated to reduce O157 and non-O157 Shiga-toxigenic Escherichia coli (STEC) on beef cattle hide pieces, simulating commercial pre-harvest hide decontamination. STEC reduction in vitro by individual and cocktailed phages was determined by efficiency of plating (EOP). Following STEC inoculation onto hide pieces, the phage intervention was applied and hide pieces were analyzed to quantify reductions in STEC counts. Phage intervention treatment resulted in 0.4 to 0.7 log(10) CFU/cm(2) (p < 0.01) E. coli O157, O121, and O103 reduction. Conversely, E. coli O111 and O45 did not show any significant reduction after application of bacteriophage intervention (p > 0.05). Multiplicity of infection (MOI) evaluation indicated E. coli O157 and O121 isolates required the fewest numbers of phages per host cell to produce host lysis. STEC-attacking phages may be applied to assist in preventing STEC transmission to beef products. MDPI 2018-07-16 /pmc/articles/PMC6068917/ /pubmed/30012993 http://dx.doi.org/10.3390/foods7070114 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Tolen, Tamra N. Xie, Yicheng Hairgrove, Thomas B. Gill, Jason J. Taylor, T. Matthew Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide |
title | Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide |
title_full | Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide |
title_fullStr | Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide |
title_full_unstemmed | Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide |
title_short | Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide |
title_sort | evaluation of commercial prototype bacteriophage intervention designed for reducing o157 and non-o157 shiga-toxigenic escherichia coli (stec) on beef cattle hide |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068917/ https://www.ncbi.nlm.nih.gov/pubmed/30012993 http://dx.doi.org/10.3390/foods7070114 |
work_keys_str_mv | AT tolentamran evaluationofcommercialprototypebacteriophageinterventiondesignedforreducingo157andnono157shigatoxigenicescherichiacolisteconbeefcattlehide AT xieyicheng evaluationofcommercialprototypebacteriophageinterventiondesignedforreducingo157andnono157shigatoxigenicescherichiacolisteconbeefcattlehide AT hairgrovethomasb evaluationofcommercialprototypebacteriophageinterventiondesignedforreducingo157andnono157shigatoxigenicescherichiacolisteconbeefcattlehide AT gilljasonj evaluationofcommercialprototypebacteriophageinterventiondesignedforreducingo157andnono157shigatoxigenicescherichiacolisteconbeefcattlehide AT taylortmatthew evaluationofcommercialprototypebacteriophageinterventiondesignedforreducingo157andnono157shigatoxigenicescherichiacolisteconbeefcattlehide |