Cargando…
A Non-Destructive System Based on Electrical Tomography and Machine Learning to Analyze the Moisture of Buildings
This article presents the results of research on a new method of spatial analysis of walls and buildings moisture. Due to the fact that destructive methods are not suitable for historical buildings of great architectural significance, a non-destructive method based on electrical tomography has been...
Autores principales: | Rymarczyk, Tomasz, Kłosowski, Grzegorz, Kozłowski, Edward |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068925/ https://www.ncbi.nlm.nih.gov/pubmed/30011936 http://dx.doi.org/10.3390/s18072285 |
Ejemplares similares
-
Comparison of Selected Machine Learning Algorithms for Industrial Electrical Tomography
por: Rymarczyk, Tomasz, et al.
Publicado: (2019) -
Logistic Regression for Machine Learning in Process Tomography
por: Rymarczyk, Tomasz, et al.
Publicado: (2019) -
Application of Machine Learning Algorithms to the Discretization Problem in Wearable Electrical Tomography Imaging for Bladder Tracking
por: Baran, Bartłomiej, et al.
Publicado: (2023) -
Quality Assessment of the Neural Algorithms on the Example of EIT-UST Hybrid Tomography
por: Kłosowski, Grzegorz, et al.
Publicado: (2020) -
Electrical Tomography Reconstruction Using Reconfigurable Waveforms in a FPGA
por: Vejar, Andres, et al.
Publicado: (2021)