Cargando…
Access Control Model Based on Time Synchronization Trust in Wireless Sensor Networks
Internal reliability and external safety of Wireless Sensor Networks (WSN) data transmission have become increasingly outstanding issues with the wide applications of WSN. This paper proposes a new method for access control and mitigation of interfering noise in time synchronization environments. Fi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069018/ https://www.ncbi.nlm.nih.gov/pubmed/29966366 http://dx.doi.org/10.3390/s18072107 |
_version_ | 1783343401046900736 |
---|---|
author | Liu, Zhaobin Ma, Qiang Liu, Wenzhi Sheng, Victor S. Zhang, Liang Liu, Gang |
author_facet | Liu, Zhaobin Ma, Qiang Liu, Wenzhi Sheng, Victor S. Zhang, Liang Liu, Gang |
author_sort | Liu, Zhaobin |
collection | PubMed |
description | Internal reliability and external safety of Wireless Sensor Networks (WSN) data transmission have become increasingly outstanding issues with the wide applications of WSN. This paper proposes a new method for access control and mitigation of interfering noise in time synchronization environments. First, a formal definition is given regarding the impact interference noise has on the clock skew and clock offset of each node. The degree of node interference behavior is estimated dynamically from the perspective of time-stamp changes caused by the interference noise. Secondly, a general access control model is proposed to resist invasion of noise interference. A prediction model is constructed using the Bayesian method for calculating the reliability of neighbor node behavior in the proposed model. Interference noise, which attacks the time synchronization, is regarded as the key factor for probability estimation of the reliability. The result of the calculations determines whether it is necessary to initiate synchronization filtering. Finally, a division of trust levels with bilinear definition is employed to lower interference noise and improve the quality of interference detection. Experimental results show that this model has advantages in system overhead, energy consumption and testing errors, compared to its counterparts. When the disturbance intensity of a WSN increases, the proposed optimized algorithm converges faster with a lower network communication load. |
format | Online Article Text |
id | pubmed-6069018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60690182018-08-07 Access Control Model Based on Time Synchronization Trust in Wireless Sensor Networks Liu, Zhaobin Ma, Qiang Liu, Wenzhi Sheng, Victor S. Zhang, Liang Liu, Gang Sensors (Basel) Article Internal reliability and external safety of Wireless Sensor Networks (WSN) data transmission have become increasingly outstanding issues with the wide applications of WSN. This paper proposes a new method for access control and mitigation of interfering noise in time synchronization environments. First, a formal definition is given regarding the impact interference noise has on the clock skew and clock offset of each node. The degree of node interference behavior is estimated dynamically from the perspective of time-stamp changes caused by the interference noise. Secondly, a general access control model is proposed to resist invasion of noise interference. A prediction model is constructed using the Bayesian method for calculating the reliability of neighbor node behavior in the proposed model. Interference noise, which attacks the time synchronization, is regarded as the key factor for probability estimation of the reliability. The result of the calculations determines whether it is necessary to initiate synchronization filtering. Finally, a division of trust levels with bilinear definition is employed to lower interference noise and improve the quality of interference detection. Experimental results show that this model has advantages in system overhead, energy consumption and testing errors, compared to its counterparts. When the disturbance intensity of a WSN increases, the proposed optimized algorithm converges faster with a lower network communication load. MDPI 2018-06-30 /pmc/articles/PMC6069018/ /pubmed/29966366 http://dx.doi.org/10.3390/s18072107 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Zhaobin Ma, Qiang Liu, Wenzhi Sheng, Victor S. Zhang, Liang Liu, Gang Access Control Model Based on Time Synchronization Trust in Wireless Sensor Networks |
title | Access Control Model Based on Time Synchronization Trust in Wireless Sensor Networks |
title_full | Access Control Model Based on Time Synchronization Trust in Wireless Sensor Networks |
title_fullStr | Access Control Model Based on Time Synchronization Trust in Wireless Sensor Networks |
title_full_unstemmed | Access Control Model Based on Time Synchronization Trust in Wireless Sensor Networks |
title_short | Access Control Model Based on Time Synchronization Trust in Wireless Sensor Networks |
title_sort | access control model based on time synchronization trust in wireless sensor networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069018/ https://www.ncbi.nlm.nih.gov/pubmed/29966366 http://dx.doi.org/10.3390/s18072107 |
work_keys_str_mv | AT liuzhaobin accesscontrolmodelbasedontimesynchronizationtrustinwirelesssensornetworks AT maqiang accesscontrolmodelbasedontimesynchronizationtrustinwirelesssensornetworks AT liuwenzhi accesscontrolmodelbasedontimesynchronizationtrustinwirelesssensornetworks AT shengvictors accesscontrolmodelbasedontimesynchronizationtrustinwirelesssensornetworks AT zhangliang accesscontrolmodelbasedontimesynchronizationtrustinwirelesssensornetworks AT liugang accesscontrolmodelbasedontimesynchronizationtrustinwirelesssensornetworks |