Cargando…

On the Cost of Introducing Speech-Like Properties to a Stimulus for Auditory Steady-State Response Measurements

Validating hearing-aid fittings in prelingual infants is challenging because typical measures (aided audiometry, etc.) are impossible with infants. One objective alternative uses an aided auditory steady-state response (ASSR) measurement. To make an appropriate measurement, the hearing aid’s signal-...

Descripción completa

Detalles Bibliográficos
Autores principales: Laugesen, Søren, Rieck, Julia Eva, Elberling, Claus, Dau, Torsten, Harte, James M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069029/
https://www.ncbi.nlm.nih.gov/pubmed/30062913
http://dx.doi.org/10.1177/2331216518789302
Descripción
Sumario:Validating hearing-aid fittings in prelingual infants is challenging because typical measures (aided audiometry, etc.) are impossible with infants. One objective alternative uses an aided auditory steady-state response (ASSR) measurement. To make an appropriate measurement, the hearing aid’s signal-processing features must be activated (or deactivated) as if the ASSR stimulus was real speech. Rather than manipulating the hearing-aid settings to achieve this, an ASSR stimulus with speech-like properties was developed. This promotes clinical simplicity and face validity of the validation. The stimulus consists of narrow-band CE-Chirps®, modified to mimic the International Speech Test Signal (ISTS). This study examines the cost of introducing the speech-like features into the ASSR stimulus. Thus, 90 to 100 Hz ASSRs were recorded to the ISTS-modified stimulus as well as an equivalent stimulus without the ISTS modification, presented through insert phones to 10 young normal-hearing subjects. Noise-corrected ASSR magnitudes and clinically relevant detection times were estimated and analyzed with mixed-model analyses of variance. As a supplement, the observed changes to the ASSR magnitudes were compared with an objective characterization of the stimuli based on modulation power. The main findings were a reduction in ASSR magnitude of 4 dB and an increase in detection time by a factor of 1.5 for the ISTS-modified stimulus compared with the standard. Detection rates were unaffected given sufficient recording time. For clinical use of the hearing-aid validation procedure, the key metric is the detection time. While this varied considerably across subjects, the observed 50% mean increase corresponds to less than 1 min of additional recording time.