Cargando…
Trivariate Empirical Mode Decomposition via Convex Optimization for Rolling Bearing Condition Identification
As a multichannel signal processing method based on data-driven, multivariate empirical mode decomposition (MEMD) has attracted much attention due to its potential ability in self-adaption and multi-scale decomposition for multivariate data. Commonly, the uniform projection scheme on a hypersphere i...
Autores principales: | Lv, Yong, Zhang, Houzhuang, Yi, Cancan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069037/ https://www.ncbi.nlm.nih.gov/pubmed/30021945 http://dx.doi.org/10.3390/s18072325 |
Ejemplares similares
-
Optimized Dynamic Mode Decomposition via Non-Convex Regularization and Multiscale Permutation Entropy
por: Dang, Zhang, et al.
Publicado: (2018) -
A Novel Fault Diagnosis Scheme for Rolling Bearing Based on Convex Optimization in Synchroextracting Chirplet Transform
por: You, Guanghui, et al.
Publicado: (2020) -
Multi-Fault Diagnosis of Rolling Bearings via Adaptive Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition and High Order Singular Value Decomposition
por: Yuan, Rui, et al.
Publicado: (2018) -
Fault Diagnosis for Rolling Bearings Using Optimized Variational Mode Decomposition and Resonance Demodulation
por: Zhang, Chunguang, et al.
Publicado: (2020) -
Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing
por: Dang, Zhang, et al.
Publicado: (2018)