Cargando…
Automatic Annotation of Unlabeled Data from Smartphone-Based Motion and Location Sensors
Automatic data annotation eliminates most of the challenges we faced due to the manual methods of annotating sensor data. It significantly improves users’ experience during sensing activities since their active involvement in the labeling process is reduced. An unsupervised learning technique such a...
Autores principales: | Pius Owoh, Nsikak, Mahinderjit Singh, Manmeet, Zaaba, Zarul Fitri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069149/ https://www.ncbi.nlm.nih.gov/pubmed/29970823 http://dx.doi.org/10.3390/s18072134 |
Ejemplares similares
-
SenseCrypt: A Security Framework for Mobile Crowd Sensing Applications
por: Pius Owoh, Nsikak, et al.
Publicado: (2020) -
A Privacy Preservation Quality of Service (QoS) Model for Data Exposure in Android Smartphone Usage
por: Abu Bakar, Anizah, et al.
Publicado: (2021) -
Harnessing the Challenges and Solutions to Improve Security Warnings: A Review
por: Zaaba, Zarul Fitri, et al.
Publicado: (2021) -
Exploration of Mobile Device Behavior for Mitigating Advanced Persistent Threats (APT): A Systematic Literature Review and Conceptual Framework
por: Jabar, Thulfiqar, et al.
Publicado: (2022) -
Target Tracking and Classification from Labeled and Unlabeled Data in Wireless Sensor Networks
por: Yoo, Jaehyun, et al.
Publicado: (2014)