Cargando…
Application of Flexible Four-In-One Microsensor to Internal Real-Time Monitoring of Proton Exchange Membrane Fuel Cell
In recent years, the development of green energy sources, such as fuel cell, biomass energy, solar energy, and tidal energy, has become a popular research subject. This study aims at a flexible four-in-one microsensor, which can be embedded in the proton exchange membrane fuel cell (PEMFC) for real-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069236/ https://www.ncbi.nlm.nih.gov/pubmed/30011864 http://dx.doi.org/10.3390/s18072269 |
Sumario: | In recent years, the development of green energy sources, such as fuel cell, biomass energy, solar energy, and tidal energy, has become a popular research subject. This study aims at a flexible four-in-one microsensor, which can be embedded in the proton exchange membrane fuel cell (PEMFC) for real-time microscopic diagnosis so as to assist in developing and improving the technology of the fuel cell. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to integrate a micro humidity sensor, micro pH sensor, micro temperature sensor, and micro voltage sensor into a flexible four-in-one microsensor. This flexible four-in-one microsensor has four functions and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, and real-time measurement. The goal was to be able to put the four-in-one microsensor in any place for measurement without affecting the performance of the fuel cell. |
---|