Cargando…
Determination of Optimal Heart Rate Variability Features Based on SVM-Recursive Feature Elimination for Cumulative Stress Monitoring Using ECG Sensor
Routine stress monitoring in daily life can predict potentially serious health impacts. Effective stress monitoring in medical and healthcare fields is dependent upon accurate determination of stress-related features. In this study, we determined the optimal stress-related features for effective mon...
Autores principales: | Park, Dajeong, Lee, Miran, Park, Sunghee E., Seong, Joon-Kyung, Youn, Inchan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069263/ https://www.ncbi.nlm.nih.gov/pubmed/30041417 http://dx.doi.org/10.3390/s18072387 |
Ejemplares similares
-
Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
por: Zhang, Xuegong, et al.
Publicado: (2006) -
dRFEtools: dynamic recursive feature elimination for omics
por: Benjamin, Kynon J M, et al.
Publicado: (2023) -
Recursive Cluster Elimination based Rank Function (SVM-RCE-R) implemented in KNIME
por: Yousef, Malik, et al.
Publicado: (2021) -
Using recursive feature elimination in random forest to account for correlated variables in high dimensional data
por: Darst, Burcu F., et al.
Publicado: (2018) -
SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis
por: Wottschel, Viktor, et al.
Publicado: (2019)