Cargando…
A Deep CNN-LSTM Model for Particulate Matter (PM(2.5)) Forecasting in Smart Cities
In modern society, air pollution is an important topic as this pollution exerts a critically bad influence on human health and the environment. Among air pollutants, Particulate Matter (PM(2.5)) consists of suspended particles with a diameter equal to or less than 2.5 μm. Sources of PM(2.5) can be c...
Autores principales: | Huang, Chiou-Jye, Kuo, Ping-Huan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069282/ https://www.ncbi.nlm.nih.gov/pubmed/29996546 http://dx.doi.org/10.3390/s18072220 |
Ejemplares similares
-
Fine particulate matter (PM(2.5)) in China at a city level
por: Zhang, Yan-Lin, et al.
Publicado: (2015) -
Research on PM2.5 Spatiotemporal Forecasting Model Based on LSTM Neural Network
por: Zhao, Fang, et al.
Publicado: (2021) -
Enhancing PM(2.5) Prediction Using NARX-Based Combined CNN and LSTM Hybrid Model
por: Moursi, Ahmed Samy AbdElAziz, et al.
Publicado: (2022) -
PM(2.5) Forecast in Korea using the Long Short-Term Memory (LSTM) Model
por: Ho, Chang-Hoi, et al.
Publicado: (2022) -
Short-Term Rental Forecast of Urban Public Bicycle Based on the HOSVD-LSTM Model in Smart City
por: Li, Dazhou, et al.
Publicado: (2020)