Cargando…
Chemical-induced disease extraction via recurrent piecewise convolutional neural networks
BACKGROUND: Extracting relationships between chemicals and diseases from unstructured literature have attracted plenty of attention since the relationships are very useful for a large number of biomedical applications such as drug repositioning and pharmacovigilance. A number of machine learning met...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069297/ https://www.ncbi.nlm.nih.gov/pubmed/30066652 http://dx.doi.org/10.1186/s12911-018-0629-3 |
Sumario: | BACKGROUND: Extracting relationships between chemicals and diseases from unstructured literature have attracted plenty of attention since the relationships are very useful for a large number of biomedical applications such as drug repositioning and pharmacovigilance. A number of machine learning methods have been proposed for chemical-induced disease (CID) extraction due to some publicly available annotated corpora. Most of them suffer from time-consuming feature engineering except deep learning methods. In this paper, we propose a novel document-level deep learning method, called recurrent piecewise convolutional neural networks (RPCNN), for CID extraction. RESULTS: Experimental results on a benchmark dataset, the CDR (Chemical-induced Disease Relation) dataset of the BioCreative V challenge for CID extraction show that the highest precision, recall and F-score of our RPCNN-based CID extraction system are 65.24, 77.21 and 70.77%, which is competitive with other state-of-the-art systems. CONCLUSIONS: A novel deep learning method is proposed for document-level CID extraction, where domain knowledge, piecewise strategy, attention mechanism, and multi-instance learning are combined together. The effectiveness of the method is proved by experiments conducted on a benchmark dataset. |
---|