Cargando…

Health Management Decision of Sensor System Based on Health Reliability Degree and Grey Group Decision-Making

Metal Oxide Semiconductor (MOS) gas sensor has been widely used in sensor systems for the advantages of fast response, high sensitivity, low cost, and so on. But, limited to the properties of materials, the phenomenon, such as aging, poisoning, and damage of the gas sensitive material will affect th...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Kai, Xu, Peng, Wei, Guo, Chen, Yinsheng, Wang, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069299/
https://www.ncbi.nlm.nih.gov/pubmed/30018245
http://dx.doi.org/10.3390/s18072316
Descripción
Sumario:Metal Oxide Semiconductor (MOS) gas sensor has been widely used in sensor systems for the advantages of fast response, high sensitivity, low cost, and so on. But, limited to the properties of materials, the phenomenon, such as aging, poisoning, and damage of the gas sensitive material will affect the measurement quality of MOS gas sensor array. To ensure the stability of the system, a health management decision strategy for the prognostics and health management (PHM) of a sensor system that is based on health reliability degree (HRD) and grey group decision-making (GGD) is proposed in this paper. The health management decision-making model is presented to choose the best health management strategy. Specially, GGD is utilized to provide health management suggestions for the sensor system. To evaluate the status of the sensor system, a joint HRD-GGD framework is declared as the health management decision-making. In this method, HRD of sensor system is obtained by fusing the output data of each sensor. The optimal decision-making recommendations for health management of the system is proposed by combining historical health reliability degree, maintenance probability, and overhaul rate. Experimental results on four different kinds of health levels demonstrate that the HRD-GGD method outperforms other methods in decision-making accuracy of sensor system. Particularly, the proposed HRD-GGD decision-making method achieves the best decision accuracy of 98.25%.