Cargando…

A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms

A novel framework based on the fast orthogonal search (FOS) method coupled with factorization algorithms was proposed and implemented to realize high-accuracy muscle force estimation via surface electromyogram (SEMG). During static isometric elbow flexion, high-density SEMG (HD-SEMG) signals were re...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiang, Yuan, Yuan, Cao, Shuai, Zhang, Xu, Chen, Xun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069375/
https://www.ncbi.nlm.nih.gov/pubmed/29997373
http://dx.doi.org/10.3390/s18072238
_version_ 1783343480108482560
author Chen, Xiang
Yuan, Yuan
Cao, Shuai
Zhang, Xu
Chen, Xun
author_facet Chen, Xiang
Yuan, Yuan
Cao, Shuai
Zhang, Xu
Chen, Xun
author_sort Chen, Xiang
collection PubMed
description A novel framework based on the fast orthogonal search (FOS) method coupled with factorization algorithms was proposed and implemented to realize high-accuracy muscle force estimation via surface electromyogram (SEMG). During static isometric elbow flexion, high-density SEMG (HD-SEMG) signals were recorded from upper arm muscles, and the generated elbow force was measured at the wrist. HD-SEMG signals were decomposed into time-invariant activation patterns and time-varying activation curves using three typical factorization algorithms including principal component analysis (PCA), independent component analysis (ICA), and nonnegative matrix factorization (NMF). The activation signal of the target muscle was obtained by summing the activation curves, and the FOS algorithm was used to create basis functions with activation signals and establish the force estimation model. Static isometric elbow flexion experiments at three target levels were performed on seven male subjects, and the force estimation performances were compared among three typical factorization algorithms as well as a conventional method for extracting the average signal envelope of all HD-SEMG channels (AVG-ENVLP method). The overall root mean square difference (RMSD) values between the measured forces and the estimated forces obtained by different methods were 11.79 ± 4.29% for AVG-ENVLP, 9.74 ± 3.77% for PCA, 9.59 ± 3.81% for ICA, and 9.51 ± 4.82% for NMF. The results demonstrated that, compared to the conventional AVG-ENVLP method, factorization algorithms could substantially improve the performance of force estimation. The FOS method coupled with factorization algorithms provides an effective way to estimate the combined force of multiple muscles and has potential value in the fields of sports biomechanics, gait analysis, prosthesis control strategy, and exoskeleton devices for assisted rehabilitation.
format Online
Article
Text
id pubmed-6069375
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-60693752018-08-07 A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms Chen, Xiang Yuan, Yuan Cao, Shuai Zhang, Xu Chen, Xun Sensors (Basel) Article A novel framework based on the fast orthogonal search (FOS) method coupled with factorization algorithms was proposed and implemented to realize high-accuracy muscle force estimation via surface electromyogram (SEMG). During static isometric elbow flexion, high-density SEMG (HD-SEMG) signals were recorded from upper arm muscles, and the generated elbow force was measured at the wrist. HD-SEMG signals were decomposed into time-invariant activation patterns and time-varying activation curves using three typical factorization algorithms including principal component analysis (PCA), independent component analysis (ICA), and nonnegative matrix factorization (NMF). The activation signal of the target muscle was obtained by summing the activation curves, and the FOS algorithm was used to create basis functions with activation signals and establish the force estimation model. Static isometric elbow flexion experiments at three target levels were performed on seven male subjects, and the force estimation performances were compared among three typical factorization algorithms as well as a conventional method for extracting the average signal envelope of all HD-SEMG channels (AVG-ENVLP method). The overall root mean square difference (RMSD) values between the measured forces and the estimated forces obtained by different methods were 11.79 ± 4.29% for AVG-ENVLP, 9.74 ± 3.77% for PCA, 9.59 ± 3.81% for ICA, and 9.51 ± 4.82% for NMF. The results demonstrated that, compared to the conventional AVG-ENVLP method, factorization algorithms could substantially improve the performance of force estimation. The FOS method coupled with factorization algorithms provides an effective way to estimate the combined force of multiple muscles and has potential value in the fields of sports biomechanics, gait analysis, prosthesis control strategy, and exoskeleton devices for assisted rehabilitation. MDPI 2018-07-11 /pmc/articles/PMC6069375/ /pubmed/29997373 http://dx.doi.org/10.3390/s18072238 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chen, Xiang
Yuan, Yuan
Cao, Shuai
Zhang, Xu
Chen, Xun
A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms
title A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms
title_full A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms
title_fullStr A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms
title_full_unstemmed A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms
title_short A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms
title_sort semg-force estimation framework based on a fast orthogonal search method coupled with factorization algorithms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069375/
https://www.ncbi.nlm.nih.gov/pubmed/29997373
http://dx.doi.org/10.3390/s18072238
work_keys_str_mv AT chenxiang asemgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms
AT yuanyuan asemgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms
AT caoshuai asemgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms
AT zhangxu asemgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms
AT chenxun asemgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms
AT chenxiang semgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms
AT yuanyuan semgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms
AT caoshuai semgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms
AT zhangxu semgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms
AT chenxun semgforceestimationframeworkbasedonafastorthogonalsearchmethodcoupledwithfactorizationalgorithms