Cargando…
Comparison of Machine Learning Models for Hazardous Gas Dispersion Prediction in Field Cases
Dispersion prediction plays a significant role in the management and emergency response to hazardous gas emissions and accidental leaks. Compared with conventional atmospheric dispersion models, machine leaning (ML) models have both high accuracy and efficiency in terms of prediction, especially in...
Autores principales: | Wang, Rongxiao, Chen, Bin, Qiu, Sihang, Zhu, Zhengqiu, Wang, Yiduo, Wang, Yiping, Qiu, Xiaogang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069387/ https://www.ncbi.nlm.nih.gov/pubmed/29996467 http://dx.doi.org/10.3390/ijerph15071450 |
Ejemplares similares
-
Data-Driven Hazardous Gas Dispersion Modeling Using the Integration of Particle Filtering and Error Propagation Detection
por: Zhu, Zhengqiu, et al.
Publicado: (2018) -
An Extended Chemical Plant Environmental Protection Game on Addressing Uncertainties of Human Adversaries
por: Zhu, Zhengqiu, et al.
Publicado: (2018) -
A data-driven approach for optimal design of integrated air quality monitoring network in a chemical cluster
por: Zhu, Zhengqiu, et al.
Publicado: (2018) -
Playing Chemical Plant Environmental Protection Games with Historical Monitoring Data
por: Zhu, Zhengqiu, et al.
Publicado: (2017) -
Strategically Patrolling in a Chemical Cluster Addressing Gas Pollutants’ Releases through a Game-Theoretic Model
por: Chen, Bin, et al.
Publicado: (2019)