Cargando…
Geo-Positioning Accuracy Improvement of Multi-Mode GF-3 Satellite SAR Imagery Based on Error Sources Analysis
The GaoFen-3 (GF-3) satellite is the only synthetic aperture radar (SAR) satellite in the High-Resolution Earth Observation System Project, which is the first C-band full-polarization SAR satellite in China. In this paper, we proposed some error sources-based weight strategies to improve the geometr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069431/ https://www.ncbi.nlm.nih.gov/pubmed/30021989 http://dx.doi.org/10.3390/s18072333 |
Sumario: | The GaoFen-3 (GF-3) satellite is the only synthetic aperture radar (SAR) satellite in the High-Resolution Earth Observation System Project, which is the first C-band full-polarization SAR satellite in China. In this paper, we proposed some error sources-based weight strategies to improve the geometric performance of multi-mode GF-3 satellite SAR images without using ground control points (GCPs). To get enough tie points, a robust SAR image registration method and the SAR-features from accelerated segment test (SAR-FAST) method is used to achieve the image registration and tie point extraction. Then, the original position of these tie points in object-space is calculated with the help of the space intersection method. With the dataset clustered by the density-based spatial clustering of applications with noise (DBSCAN) algorithm, we undertake the block adjustment with a bias-compensated rational function model (RFM) aided to improve the geometric performance of these multi-mode GF-3 satellite SAR images. Different weight strategies are proposed to develop the normal equation matrix according to the error sources analysis of GF-3 satellite SAR images, and the preconditioned conjugate gradient (PCG) method is utilized to solve the normal equation. The experimental results indicate that our proposed method can improve the geometric positioning accuracy of GF-3 satellite SAR images within 2 pixels. |
---|