Cargando…
Selective Monitoring of Oxyanion Mixtures by a Flow System with Raman Detection
Raman spectroscopy is a selective detection system scarcely applied for the flow analysis of solutions with the aim of detecting several compounds at once without a previous separation step. This work explores the potential of a portable Raman system in a flow system for the selective detection of a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069446/ https://www.ncbi.nlm.nih.gov/pubmed/29986534 http://dx.doi.org/10.3390/s18072196 |
Sumario: | Raman spectroscopy is a selective detection system scarcely applied for the flow analysis of solutions with the aim of detecting several compounds at once without a previous separation step. This work explores the potential of a portable Raman system in a flow system for the selective detection of a mixture of seven oxyanions (carbonate, sulphate, nitrate, phosphate, chlorate, perchlorate, and thiosulphate). The specific bands of these compounds (symmetric stretching Raman active vibrations of carbonate at 1068 cm(−1), nitrate at 1049 cm(−1), thiosulphate at 998 cm(−1), phosphate at 989 cm(−1), sulphate at 982 cm(−1), perchlorate at 935 cm(−1), and chlorate at 932 cm(−1)) enabled their simultaneous detection in mixtures. Although the oxyanions’ limit of detection (LOD) was rather poor (in the millimolar range), this extremely simple system is very useful for the single-measurement detection of most of the oxyanions in mixtures, without requiring a previous separation step. In addition, quantitative determination of the desired oxyanion can be performed by means of the corresponding calibration line. These are important advantages for controlling in-line processes in industries like those manufacturing fertilizers, pharmaceuticals, chemicals, or food, among others. |
---|