Cargando…
Effect of C/N Ratio on the Removal of Nitrogen and Microbial Characteristics in the Water Saturated Denitrifying Section of a Two-Stage Constructed Rapid Infiltration System
The aim of this study was to improve the removal of nitrogen pollutants from artificial sewage by a modeled two-stage constructed rapid infiltration (CRI) system. The C/N ratio of the second stage influent was elevated by addition of glucose. When the C/N ratio was increased to 5, the mean removal e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069465/ https://www.ncbi.nlm.nih.gov/pubmed/30002283 http://dx.doi.org/10.3390/ijerph15071469 |
Sumario: | The aim of this study was to improve the removal of nitrogen pollutants from artificial sewage by a modeled two-stage constructed rapid infiltration (CRI) system. The C/N ratio of the second stage influent was elevated by addition of glucose. When the C/N ratio was increased to 5, the mean removal efficiency of total nitrogen (TN) reached up to 75.4%. Under this condition, the number of denitrifying bacteria in the permanently submerged denitrifying section (the second stage) was 22 times higher than that in the control experiment without added glucose. Elevation of the C/N ratio resulted in lower concentrations of nitrate and TN in the second stage effluent, without impairment of chemical oxygen demand removal. The concentration of nitrate and TN in effluent decreased as the abundance of denitrifying bacteria increased. Moreover, the bacterial biofilms that had formed in the sand of the second stage container were analyzed. The secretion of extracellular polymeric substances, a major constituent of biofilms, was enhanced as a result of the elevated C/N ratio, which lead to the improved protection of the bacteria and enhanced the removal of pollutants. |
---|