Cargando…
Endotoxin Tolerant Dendritic Cells Suppress Inflammatory Responses in Splenocytes via Interleukin-1 Receptor Associated Kinase (IRAK)-M and Programmed Death-Ligand 1 (PDL-1)
BACKGROUND: Sepsis causes the highest mortality in non-cardiovascular intensive care units worldwide. Recent research has demonstrated that the late phase of sepsis, characterized as septic immunosuppression, is the central pathophysiological mechanism of immune dysfunction. Investigating the suppre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069485/ https://www.ncbi.nlm.nih.gov/pubmed/29995830 http://dx.doi.org/10.12659/MSM.908242 |
_version_ | 1783343507274989568 |
---|---|
author | Zhou, Yuping Xia, Qin Wang, Xi Fu, Shukun |
author_facet | Zhou, Yuping Xia, Qin Wang, Xi Fu, Shukun |
author_sort | Zhou, Yuping |
collection | PubMed |
description | BACKGROUND: Sepsis causes the highest mortality in non-cardiovascular intensive care units worldwide. Recent research has demonstrated that the late phase of sepsis, characterized as septic immunosuppression, is the central pathophysiological mechanism of immune dysfunction. Investigating the suppressive mechanism of immune cells may identify possible targets for therapy. MATERIAL/METHODS: We used LPS 2-hit model for dendritic cells (DCs) to establish endotoxin tolerance, and co-cultured with splenocytes. Co-culture responses and gene expressions were evaluated. RESULTS: Endotoxin tolerant DCs showed irresponsiveness in pro-inflammatory cytokine production and expressed negative regulator genes of inflammation. When co-cultured with splenocytes, suppression of inflammatory responses and T cells apoptosis were observed with elevated expression of IRAK-M and PDL-1, and interference and neutralization of these 2 molecules led to partly reversed suppression of inflammation. CONCLUSIONS: Our research found direct regulation of endotoxin tolerant DCs to other immune cells and suggested a possible mechanism via IRAK-M and PDL-1. This may inform research on septic immunosuppression and suggests possible therapeutic targets for sepsis. |
format | Online Article Text |
id | pubmed-6069485 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60694852018-08-02 Endotoxin Tolerant Dendritic Cells Suppress Inflammatory Responses in Splenocytes via Interleukin-1 Receptor Associated Kinase (IRAK)-M and Programmed Death-Ligand 1 (PDL-1) Zhou, Yuping Xia, Qin Wang, Xi Fu, Shukun Med Sci Monit Animal Study BACKGROUND: Sepsis causes the highest mortality in non-cardiovascular intensive care units worldwide. Recent research has demonstrated that the late phase of sepsis, characterized as septic immunosuppression, is the central pathophysiological mechanism of immune dysfunction. Investigating the suppressive mechanism of immune cells may identify possible targets for therapy. MATERIAL/METHODS: We used LPS 2-hit model for dendritic cells (DCs) to establish endotoxin tolerance, and co-cultured with splenocytes. Co-culture responses and gene expressions were evaluated. RESULTS: Endotoxin tolerant DCs showed irresponsiveness in pro-inflammatory cytokine production and expressed negative regulator genes of inflammation. When co-cultured with splenocytes, suppression of inflammatory responses and T cells apoptosis were observed with elevated expression of IRAK-M and PDL-1, and interference and neutralization of these 2 molecules led to partly reversed suppression of inflammation. CONCLUSIONS: Our research found direct regulation of endotoxin tolerant DCs to other immune cells and suggested a possible mechanism via IRAK-M and PDL-1. This may inform research on septic immunosuppression and suggests possible therapeutic targets for sepsis. International Scientific Literature, Inc. 2018-07-11 /pmc/articles/PMC6069485/ /pubmed/29995830 http://dx.doi.org/10.12659/MSM.908242 Text en © Med Sci Monit, 2018 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Animal Study Zhou, Yuping Xia, Qin Wang, Xi Fu, Shukun Endotoxin Tolerant Dendritic Cells Suppress Inflammatory Responses in Splenocytes via Interleukin-1 Receptor Associated Kinase (IRAK)-M and Programmed Death-Ligand 1 (PDL-1) |
title | Endotoxin Tolerant Dendritic Cells Suppress Inflammatory Responses in Splenocytes via Interleukin-1 Receptor Associated Kinase (IRAK)-M and Programmed Death-Ligand 1 (PDL-1) |
title_full | Endotoxin Tolerant Dendritic Cells Suppress Inflammatory Responses in Splenocytes via Interleukin-1 Receptor Associated Kinase (IRAK)-M and Programmed Death-Ligand 1 (PDL-1) |
title_fullStr | Endotoxin Tolerant Dendritic Cells Suppress Inflammatory Responses in Splenocytes via Interleukin-1 Receptor Associated Kinase (IRAK)-M and Programmed Death-Ligand 1 (PDL-1) |
title_full_unstemmed | Endotoxin Tolerant Dendritic Cells Suppress Inflammatory Responses in Splenocytes via Interleukin-1 Receptor Associated Kinase (IRAK)-M and Programmed Death-Ligand 1 (PDL-1) |
title_short | Endotoxin Tolerant Dendritic Cells Suppress Inflammatory Responses in Splenocytes via Interleukin-1 Receptor Associated Kinase (IRAK)-M and Programmed Death-Ligand 1 (PDL-1) |
title_sort | endotoxin tolerant dendritic cells suppress inflammatory responses in splenocytes via interleukin-1 receptor associated kinase (irak)-m and programmed death-ligand 1 (pdl-1) |
topic | Animal Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069485/ https://www.ncbi.nlm.nih.gov/pubmed/29995830 http://dx.doi.org/10.12659/MSM.908242 |
work_keys_str_mv | AT zhouyuping endotoxintolerantdendriticcellssuppressinflammatoryresponsesinsplenocytesviainterleukin1receptorassociatedkinaseirakmandprogrammeddeathligand1pdl1 AT xiaqin endotoxintolerantdendriticcellssuppressinflammatoryresponsesinsplenocytesviainterleukin1receptorassociatedkinaseirakmandprogrammeddeathligand1pdl1 AT wangxi endotoxintolerantdendriticcellssuppressinflammatoryresponsesinsplenocytesviainterleukin1receptorassociatedkinaseirakmandprogrammeddeathligand1pdl1 AT fushukun endotoxintolerantdendriticcellssuppressinflammatoryresponsesinsplenocytesviainterleukin1receptorassociatedkinaseirakmandprogrammeddeathligand1pdl1 |