Cargando…
Challenges in the use of atomistic simulations to predict solubilities of drug-like molecules
Background: Solubility is a physical property of high importance to the pharmaceutical industry, the prediction of which for potential drugs has so far been a hard task. We attempted to predict the solubility of acetylsalicylic acid (ASA) by estimating the absolute chemical potentials of its most st...
Autores principales: | Duarte Ramos Matos, Guilherme, Mobley, David L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069752/ https://www.ncbi.nlm.nih.gov/pubmed/30109026 http://dx.doi.org/10.12688/f1000research.14960.2 |
Ejemplares similares
-
Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
por: Chi, Mingzhe, et al.
Publicado: (2021) -
Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules
por: Tosca, Elena M., et al.
Publicado: (2021) -
Pyrochlore Compounds From Atomistic Simulations
por: Connor, Timothy, et al.
Publicado: (2021) -
Structure Based Modeling of Small Molecules Binding to the TLR7 by Atomistic Level Simulations
por: Gentile, Francesco, et al.
Publicado: (2015) -
Viscosity Prediction
of High-Concentration Antibody
Solutions with Atomistic Simulations
por: Prass, Tobias M., et al.
Publicado: (2023)