Cargando…

The association between time-mean serum uric acid levels and the incidence of chronic kidney disease in the general population: a retrospective study

BACKGROUND: Investigations on the role of the time-mean serum uric acid (SUA) value in determining the risk of chronic kidney disease (CKD) are limited. We investigated whether the time-mean SUA value indicates the risk of CKD, and explored associations of the baseline and time-mean SUA levels with...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Meiyu, Hu, Kang, Jin, Juan, Wu, Diandian, Hu, Peiying, He, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069815/
https://www.ncbi.nlm.nih.gov/pubmed/30064367
http://dx.doi.org/10.1186/s12882-018-0982-6
Descripción
Sumario:BACKGROUND: Investigations on the role of the time-mean serum uric acid (SUA) value in determining the risk of chronic kidney disease (CKD) are limited. We investigated whether the time-mean SUA value indicates the risk of CKD, and explored associations of the baseline and time-mean SUA levels with kidney function decline and incident CKD in a healthy population. METHODS: We initiated an inhabitant-based cohort study between January 2011 and December 2016. All participants completed a yearly medical check-up at the Zhejiang Province People’s Hospital and had baseline estimated glomerular filtration rates (eGFR) > 60 ml/min/1.73m(2). The SUA level and eGFR were assessed every year in the follow-up period. A multivariate adjusted binary logistic regression analysis and Cox proportional hazards models were used to evaluate the risk of newly-developed CKD among different stratified groups. RESULTS: During the 6-year follow-up period, 227 (4.4%) participants developed CKD. In multivariable-adjusted analyses, the odds ratio (OR) for new-onset CKD increased, with higher time-mean SUA levels than at baseline (OR: 1.00 [reference], 2.709 [95% confidence interval: 1.836–5.293], 3.754 [1.898–7.428], and 7.462 [3.694–15.073]). After adjustment for potential cofounders, a multivariate Cox proportional hazard model showed that a higher SUA increased the risk of developing CKD (the adjusted hazard ratios of the highest and lowest quartiles for the baseline and time-mean SUA levels were 1.689 [1.058–2.696] and 6.320 [3.285–12.159], respectively). CONCLUSION: An increased time-mean and single SUA value were independently associated with an increased likelihood of eGFR decline and development of new-onset CKD in the general population.