Cargando…

Modeling gene-regulatory networks to describe cell fate transitions and predict master regulators

Complex organisms originate from and are maintained by the information encoded in the genome. A major challenge of systems biology is to develop algorithms that describe the dynamic regulation of genome functions from large omics datasets. Here, we describe TETRAMER, which reconstructs gene-regulato...

Descripción completa

Detalles Bibliográficos
Autores principales: Cholley, Pierre-Etienne, Moehlin, Julien, Rohmer, Alexia, Zilliox, Vincent, Nicaise, Samuel, Gronemeyer, Hinrich, Mendoza-Parra, Marco Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070484/
https://www.ncbi.nlm.nih.gov/pubmed/30083390
http://dx.doi.org/10.1038/s41540-018-0066-z
Descripción
Sumario:Complex organisms originate from and are maintained by the information encoded in the genome. A major challenge of systems biology is to develop algorithms that describe the dynamic regulation of genome functions from large omics datasets. Here, we describe TETRAMER, which reconstructs gene-regulatory networks from temporal transcriptome data during cell fate transitions to predict “master” regulators by simulating cascades of temporal transcription-regulatory events.