Cargando…
Processivity of dimeric kinesin‐1 molecular motors
Kinesin‐1 is a homodimeric motor protein that can move along microtubule filaments by hydrolyzing ATP with a high processivity. How the two motor domains are coordinated to achieve such high processivity is not clear. To address this issue, we computationally studied the run length of the dimer with...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070657/ https://www.ncbi.nlm.nih.gov/pubmed/30087836 http://dx.doi.org/10.1002/2211-5463.12486 |
_version_ | 1783343713614823424 |
---|---|
author | Guo, Si‐Kao Shi, Xiao‐Xuan Wang, Peng‐Ye Xie, Ping |
author_facet | Guo, Si‐Kao Shi, Xiao‐Xuan Wang, Peng‐Ye Xie, Ping |
author_sort | Guo, Si‐Kao |
collection | PubMed |
description | Kinesin‐1 is a homodimeric motor protein that can move along microtubule filaments by hydrolyzing ATP with a high processivity. How the two motor domains are coordinated to achieve such high processivity is not clear. To address this issue, we computationally studied the run length of the dimer with our proposed model. The computational data quantitatively reproduced the puzzling experimental data, including the dramatically asymmetric character of the run length with respect to the direction of external load acting on the coiled‐coil stalk, the enhancement of the run length by addition of phosphate, and the contrary features of the run length for different types of kinesin‐1 with extensions of their neck linkers compared with those without extension of the neck linker. The computational data on other aspects of the movement dynamics such as velocity and durations of one‐head‐bound and two‐head‐bound states in a mechanochemical coupling cycle were also in quantitative agreement with the available experimental data. Moreover, predicted results are provided on dependence of the run length upon external load acting on one head of the dimer, which can be easily tested in the future using single‐molecule optical trapping assays. |
format | Online Article Text |
id | pubmed-6070657 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60706572018-08-07 Processivity of dimeric kinesin‐1 molecular motors Guo, Si‐Kao Shi, Xiao‐Xuan Wang, Peng‐Ye Xie, Ping FEBS Open Bio Research Articles Kinesin‐1 is a homodimeric motor protein that can move along microtubule filaments by hydrolyzing ATP with a high processivity. How the two motor domains are coordinated to achieve such high processivity is not clear. To address this issue, we computationally studied the run length of the dimer with our proposed model. The computational data quantitatively reproduced the puzzling experimental data, including the dramatically asymmetric character of the run length with respect to the direction of external load acting on the coiled‐coil stalk, the enhancement of the run length by addition of phosphate, and the contrary features of the run length for different types of kinesin‐1 with extensions of their neck linkers compared with those without extension of the neck linker. The computational data on other aspects of the movement dynamics such as velocity and durations of one‐head‐bound and two‐head‐bound states in a mechanochemical coupling cycle were also in quantitative agreement with the available experimental data. Moreover, predicted results are provided on dependence of the run length upon external load acting on one head of the dimer, which can be easily tested in the future using single‐molecule optical trapping assays. John Wiley and Sons Inc. 2018-07-20 /pmc/articles/PMC6070657/ /pubmed/30087836 http://dx.doi.org/10.1002/2211-5463.12486 Text en © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Guo, Si‐Kao Shi, Xiao‐Xuan Wang, Peng‐Ye Xie, Ping Processivity of dimeric kinesin‐1 molecular motors |
title | Processivity of dimeric kinesin‐1 molecular motors |
title_full | Processivity of dimeric kinesin‐1 molecular motors |
title_fullStr | Processivity of dimeric kinesin‐1 molecular motors |
title_full_unstemmed | Processivity of dimeric kinesin‐1 molecular motors |
title_short | Processivity of dimeric kinesin‐1 molecular motors |
title_sort | processivity of dimeric kinesin‐1 molecular motors |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070657/ https://www.ncbi.nlm.nih.gov/pubmed/30087836 http://dx.doi.org/10.1002/2211-5463.12486 |
work_keys_str_mv | AT guosikao processivityofdimerickinesin1molecularmotors AT shixiaoxuan processivityofdimerickinesin1molecularmotors AT wangpengye processivityofdimerickinesin1molecularmotors AT xieping processivityofdimerickinesin1molecularmotors |