Cargando…
A Similarity Regression Fusion Model for Integrating Multi-Omics Data to Identify Cancer Subtypes
The identification of cancer subtypes is crucial to cancer diagnosis and treatments. A number of methods have been proposed to identify cancer subtypes by integrating multi-omics data in recent years. However, the existing methods rarely consider the biases of similarity between samples and weights...
Autores principales: | Guo, Yang, Zheng, Jianning, Shang, Xuequn, Li, Zhanhuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070922/ https://www.ncbi.nlm.nih.gov/pubmed/29933539 http://dx.doi.org/10.3390/genes9070314 |
Ejemplares similares
-
Improvement of cancer subtype prediction by incorporating transcriptome expression data and heterogeneous biological networks
por: Guo, Yang, et al.
Publicado: (2018) -
BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data
por: Guo, Yang, et al.
Publicado: (2018) -
Multi-omic integration via similarity network fusion to detect molecular subtypes of ageing
por: Yang, Mu, et al.
Publicado: (2023) -
Multi-omics data integration for subtype identification of Chinese lower-grade gliomas: A joint similarity network fusion approach
por: Li, Lingmei, et al.
Publicado: (2022) -
Linking genotype to phenotype in multi-omics data of small sample
por: Guo, Xinpeng, et al.
Publicado: (2021)