Cargando…
Gene Regulatory Networks Reconstruction Using the Flooding-Pruning Hill-Climbing Algorithm
The explosion of genomic data provides new opportunities to improve the task of gene regulatory network reconstruction. Because of its inherent probability character, the Bayesian network is one of the most promising methods. However, excessive computation time and the requirements of a large number...
Autores principales: | Xing, Linlin, Guo, Maozu, Liu, Xiaoyan, Wang, Chunyu, Zhang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071145/ https://www.ncbi.nlm.nih.gov/pubmed/29986472 http://dx.doi.org/10.3390/genes9070342 |
Ejemplares similares
-
An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection
por: Xing, Linlin, et al.
Publicado: (2017) -
Progressive Learning Hill Climbing Algorithm with Energy-Map-Based Initialization for Image Reconstruction
por: Zhang, Yuhui, et al.
Publicado: (2023) -
Using Bayesian networks with Max-Min Hill-Climbing algorithm to detect factors related to multimorbidity
por: Song, Wenzhu, et al.
Publicado: (2022) -
Constructing an integrated gene similarity network for the identification of disease genes
por: Tian, Zhen, et al.
Publicado: (2017) -
Women healers and physicians: climbing a long hill
por: Bonner, Thomas N
Publicado: (1998)