Cargando…
Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks
Brain imaging studies indicate that chronic cocaine users display altered functional connectivity between prefrontal cortical, thalamic, striatal, and limbic regions; however, the use of cross-sectional designs in these studies precludes measuring baseline brain activity prior to cocaine use. Animal...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071197/ https://www.ncbi.nlm.nih.gov/pubmed/30073194 http://dx.doi.org/10.1523/ENEURO.0081-18.2018 |
_version_ | 1783343828741128192 |
---|---|
author | Orsini, Caitlin A. Colon-Perez, Luis M. Heshmati, Sara C. Setlow, Barry Febo, Marcelo |
author_facet | Orsini, Caitlin A. Colon-Perez, Luis M. Heshmati, Sara C. Setlow, Barry Febo, Marcelo |
author_sort | Orsini, Caitlin A. |
collection | PubMed |
description | Brain imaging studies indicate that chronic cocaine users display altered functional connectivity between prefrontal cortical, thalamic, striatal, and limbic regions; however, the use of cross-sectional designs in these studies precludes measuring baseline brain activity prior to cocaine use. Animal studies can circumvent this limitation by comparing functional connectivity between baseline and various time points after chronic cocaine use. In the present study, adult male Long–Evans rats were trained to self-administer cocaine intravenously for 6 h sessions daily over 14 consecutive days. Two additional groups serving as controls underwent sucrose self-administration or exposure to the test chambers alone. Functional magnetic resonance imaging was conducted before self-administration and after 1 and 14 d of abstinence (1d and 14d Abs). After 1d Abs from cocaine, there were increased clustering coefficients in brain areas involved in reward seeking, learning, memory, and autonomic and affective processing, including amygdala, hypothalamus, striatum, hippocampus, and thalamus. Similar changes in clustering coefficient after 1d Abs from sucrose were evident in predominantly thalamic brain regions. Notably, there were no changes in strength of functional connectivity at 1 or 14 d after either cocaine or sucrose self-administration. The results suggest that cocaine and sucrose can change the arrangement of functional connectivity of brain regions involved in cognition and emotion, but that these changes dissipate across the early stages of abstinence. The study also emphasizes the importance of including baseline measures in longitudinal functional neuroimaging designs seeking to assess functional connectivity in the context of substance use. |
format | Online Article Text |
id | pubmed-6071197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-60711972018-08-02 Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks Orsini, Caitlin A. Colon-Perez, Luis M. Heshmati, Sara C. Setlow, Barry Febo, Marcelo eNeuro New Research Brain imaging studies indicate that chronic cocaine users display altered functional connectivity between prefrontal cortical, thalamic, striatal, and limbic regions; however, the use of cross-sectional designs in these studies precludes measuring baseline brain activity prior to cocaine use. Animal studies can circumvent this limitation by comparing functional connectivity between baseline and various time points after chronic cocaine use. In the present study, adult male Long–Evans rats were trained to self-administer cocaine intravenously for 6 h sessions daily over 14 consecutive days. Two additional groups serving as controls underwent sucrose self-administration or exposure to the test chambers alone. Functional magnetic resonance imaging was conducted before self-administration and after 1 and 14 d of abstinence (1d and 14d Abs). After 1d Abs from cocaine, there were increased clustering coefficients in brain areas involved in reward seeking, learning, memory, and autonomic and affective processing, including amygdala, hypothalamus, striatum, hippocampus, and thalamus. Similar changes in clustering coefficient after 1d Abs from sucrose were evident in predominantly thalamic brain regions. Notably, there were no changes in strength of functional connectivity at 1 or 14 d after either cocaine or sucrose self-administration. The results suggest that cocaine and sucrose can change the arrangement of functional connectivity of brain regions involved in cognition and emotion, but that these changes dissipate across the early stages of abstinence. The study also emphasizes the importance of including baseline measures in longitudinal functional neuroimaging designs seeking to assess functional connectivity in the context of substance use. Society for Neuroscience 2018-07-24 /pmc/articles/PMC6071197/ /pubmed/30073194 http://dx.doi.org/10.1523/ENEURO.0081-18.2018 Text en Copyright © 2018 Orsini et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | New Research Orsini, Caitlin A. Colon-Perez, Luis M. Heshmati, Sara C. Setlow, Barry Febo, Marcelo Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks |
title | Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks |
title_full | Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks |
title_fullStr | Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks |
title_full_unstemmed | Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks |
title_short | Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks |
title_sort | functional connectivity of chronic cocaine use reveals progressive neuroadaptations in neocortical, striatal, and limbic networks |
topic | New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071197/ https://www.ncbi.nlm.nih.gov/pubmed/30073194 http://dx.doi.org/10.1523/ENEURO.0081-18.2018 |
work_keys_str_mv | AT orsinicaitlina functionalconnectivityofchroniccocaineuserevealsprogressiveneuroadaptationsinneocorticalstriatalandlimbicnetworks AT colonperezluism functionalconnectivityofchroniccocaineuserevealsprogressiveneuroadaptationsinneocorticalstriatalandlimbicnetworks AT heshmatisarac functionalconnectivityofchroniccocaineuserevealsprogressiveneuroadaptationsinneocorticalstriatalandlimbicnetworks AT setlowbarry functionalconnectivityofchroniccocaineuserevealsprogressiveneuroadaptationsinneocorticalstriatalandlimbicnetworks AT febomarcelo functionalconnectivityofchroniccocaineuserevealsprogressiveneuroadaptationsinneocorticalstriatalandlimbicnetworks |