Cargando…
A Multilevel Computational Characterization of Endophenotypes in Addiction
Addiction is characterized by a profound intersubject (phenotypic) variability in the expression of addictive symptomatology and propensity to relapse following treatment. However, laboratory investigations have primarily focused on common neural substrates in addiction and have not yet been able to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071202/ https://www.ncbi.nlm.nih.gov/pubmed/30073199 http://dx.doi.org/10.1523/ENEURO.0151-18.2018 |
_version_ | 1783343829929164800 |
---|---|
author | Fiore, Vincenzo G. Ognibene, Dimitri Adinoff, Bryon Gu, Xiaosi |
author_facet | Fiore, Vincenzo G. Ognibene, Dimitri Adinoff, Bryon Gu, Xiaosi |
author_sort | Fiore, Vincenzo G. |
collection | PubMed |
description | Addiction is characterized by a profound intersubject (phenotypic) variability in the expression of addictive symptomatology and propensity to relapse following treatment. However, laboratory investigations have primarily focused on common neural substrates in addiction and have not yet been able to identify mechanisms that can account for the multifaceted phenotypic behaviors reported in the literature. To fill this knowledge gap theoretically, here we simulated phenotypic variations in addiction symptomology and responses to putative treatments, using both a neural model, based on cortico-striatal circuit dynamics, and an algorithmic model of reinforcement learning (RL). These simulations rely on the widely accepted assumption that both the ventral, model-based, goal-directed system and the dorsal, model-free, habitual system are vulnerable to extra-physiologic dopamine reinforcements triggered by addictive rewards. We found that endophenotypic differences in the balance between the two circuit or control systems resulted in an inverted-U shape in optimal choice behavior. Specifically, greater unbalance led to a higher likelihood of developing addiction and more severe drug-taking behaviors. Furthermore, endophenotypes with opposite asymmetrical biases among cortico-striatal circuits expressed similar addiction behaviors, but responded differently to simulated treatments, suggesting personalized treatment development could rely on endophenotypic rather than phenotypic differentiations. We propose our simulated results, confirmed across neural and algorithmic levels of analysis, inform on a fundamental and, to date, neglected quantitative method to characterize clinical heterogeneity in addiction. |
format | Online Article Text |
id | pubmed-6071202 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-60712022018-08-02 A Multilevel Computational Characterization of Endophenotypes in Addiction Fiore, Vincenzo G. Ognibene, Dimitri Adinoff, Bryon Gu, Xiaosi eNeuro Theory/New Concepts Addiction is characterized by a profound intersubject (phenotypic) variability in the expression of addictive symptomatology and propensity to relapse following treatment. However, laboratory investigations have primarily focused on common neural substrates in addiction and have not yet been able to identify mechanisms that can account for the multifaceted phenotypic behaviors reported in the literature. To fill this knowledge gap theoretically, here we simulated phenotypic variations in addiction symptomology and responses to putative treatments, using both a neural model, based on cortico-striatal circuit dynamics, and an algorithmic model of reinforcement learning (RL). These simulations rely on the widely accepted assumption that both the ventral, model-based, goal-directed system and the dorsal, model-free, habitual system are vulnerable to extra-physiologic dopamine reinforcements triggered by addictive rewards. We found that endophenotypic differences in the balance between the two circuit or control systems resulted in an inverted-U shape in optimal choice behavior. Specifically, greater unbalance led to a higher likelihood of developing addiction and more severe drug-taking behaviors. Furthermore, endophenotypes with opposite asymmetrical biases among cortico-striatal circuits expressed similar addiction behaviors, but responded differently to simulated treatments, suggesting personalized treatment development could rely on endophenotypic rather than phenotypic differentiations. We propose our simulated results, confirmed across neural and algorithmic levels of analysis, inform on a fundamental and, to date, neglected quantitative method to characterize clinical heterogeneity in addiction. Society for Neuroscience 2018-07-17 /pmc/articles/PMC6071202/ /pubmed/30073199 http://dx.doi.org/10.1523/ENEURO.0151-18.2018 Text en Copyright © 2018 Fiore et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Theory/New Concepts Fiore, Vincenzo G. Ognibene, Dimitri Adinoff, Bryon Gu, Xiaosi A Multilevel Computational Characterization of Endophenotypes in Addiction |
title | A Multilevel Computational Characterization of Endophenotypes in Addiction |
title_full | A Multilevel Computational Characterization of Endophenotypes in Addiction |
title_fullStr | A Multilevel Computational Characterization of Endophenotypes in Addiction |
title_full_unstemmed | A Multilevel Computational Characterization of Endophenotypes in Addiction |
title_short | A Multilevel Computational Characterization of Endophenotypes in Addiction |
title_sort | multilevel computational characterization of endophenotypes in addiction |
topic | Theory/New Concepts |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071202/ https://www.ncbi.nlm.nih.gov/pubmed/30073199 http://dx.doi.org/10.1523/ENEURO.0151-18.2018 |
work_keys_str_mv | AT fiorevincenzog amultilevelcomputationalcharacterizationofendophenotypesinaddiction AT ognibenedimitri amultilevelcomputationalcharacterizationofendophenotypesinaddiction AT adinoffbryon amultilevelcomputationalcharacterizationofendophenotypesinaddiction AT guxiaosi amultilevelcomputationalcharacterizationofendophenotypesinaddiction AT fiorevincenzog multilevelcomputationalcharacterizationofendophenotypesinaddiction AT ognibenedimitri multilevelcomputationalcharacterizationofendophenotypesinaddiction AT adinoffbryon multilevelcomputationalcharacterizationofendophenotypesinaddiction AT guxiaosi multilevelcomputationalcharacterizationofendophenotypesinaddiction |