Cargando…
Principled multi-omic analysis reveals gene regulatory mechanisms of phenotype variation
Recent studies have analyzed large-scale data sets of gene expression to identify genes associated with interindividual variation in phenotypes ranging from cancer subtypes to drug sensitivity, promising new avenues of research in personalized medicine. However, gene expression data alone is limited...
Autores principales: | Hanson, Casey, Cairns, Junmei, Wang, Liewei, Sinha, Saurabh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071639/ https://www.ncbi.nlm.nih.gov/pubmed/29898900 http://dx.doi.org/10.1101/gr.227066.117 |
Ejemplares similares
-
Knowledge-guided gene prioritization reveals new insights into the mechanisms of chemoresistance
por: Emad, Amin, et al.
Publicado: (2017) -
An integrated multi-omics approach to identify regulatory mechanisms in cancer metastatic processes
por: Ghaffari, Saba, et al.
Publicado: (2021) -
Mapping the regulatory landscape of auditory hair cells from single-cell multi-omics data
por: Wang, Shuze, et al.
Publicado: (2021) -
Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets
por: Argelaguet, Ricard, et al.
Publicado: (2018) -
scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks
por: Jin, Ting, et al.
Publicado: (2021)