Cargando…

Role of lipid transfer proteins in loading CD1 antigen-presenting molecules

Research to connect lipids with immunology is growing, but details about the specific roles of lipid transfer proteins (LTPs) in antigen presentation remain unclear. A single class of major histocompatibility class-like molecules, called CD1 molecules, can present lipids and glycolipids to the immun...

Descripción completa

Detalles Bibliográficos
Autor principal: Teyton, Luc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Biochemistry and Molecular Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071766/
https://www.ncbi.nlm.nih.gov/pubmed/29559523
http://dx.doi.org/10.1194/jlr.R083212
Descripción
Sumario:Research to connect lipids with immunology is growing, but details about the specific roles of lipid transfer proteins (LTPs) in antigen presentation remain unclear. A single class of major histocompatibility class-like molecules, called CD1 molecules, can present lipids and glycolipids to the immune system. These molecules all have a common hydrophobic antigen-binding groove. The loading of this groove with various lipids throughout the life of a CD1 molecule defines the immune recognition of lipids by T cells. At each location of residence, CD1 molecules are exposed to particular physicochemical conditions, particular collections of lipids, and unique combinations of LTPs that will define which lipids bind to CD1 and which do not. The lipid transfer machinery that is used by CD1 molecules is entirely hijacked from the normal synthetic and catalytic pathways of lipids. The precise determinants that regulate the presentation of certain lipids over others with respect to chemistry, solubility, and abundance are still poorly defined and require investigation to allow the use of lipids as regular antigenic targets of immunotherapy and vaccine.