Cargando…
Framework for fusing traffic information from social and physical transportation data
Tremendous volumes of messages on social media platforms provide supplementary traffic information and encapsulate crowd wisdom for solving transportation problems. However, social media messages manifested in human languages are usually characterized with redundant, fuzzy and subjective features. H...
Autores principales: | Zheng, Zhihao, Wang, Chengcheng, Wang, Pu, Xiong, Yusha, Zhang, Fan, Lv, Yisheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072031/ https://www.ncbi.nlm.nih.gov/pubmed/30071064 http://dx.doi.org/10.1371/journal.pone.0201531 |
Ejemplares similares
-
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021) -
Predicting subway passenger flows under different traffic conditions
por: Ling, Ximan, et al.
Publicado: (2018) -
Graph convolutional networks fusing motif-structure information
por: Wang, Bin, et al.
Publicado: (2022) -
Fungal social barriers: to fuse, or not to fuse, that is the question
por: Gonçalves, A. Pedro, et al.
Publicado: (2020) -
Incorporating Multivariate Auxiliary Information for Traffic Prediction on Highways
por: Li, Bao, et al.
Publicado: (2023)